

This discussion paper is/has been under review for the journal Geoscientific Model Development (GMD). Please refer to the corresponding final paper in GMD if available.

Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere

F. M. O'Connor¹, C. E. Johnson¹, O. Morgenstern^{2,*}, N. L. Abraham², P. Braesicke², M. Dalvi¹, G. A. Folberth¹, M. G. Sanderson¹, P. J. Telford², P. J. Young^{2,**}, G. Zeng^{2,*}, W. J. Collins^{1,***}, and J. A. Pyle²

Received: 1 February 2013 – Accepted: 14 February 2013 – Published: 6 March 2013

Correspondence to: F. M. O'Connor (fiona.oconnor@metoffice.gov.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

6

Discussion Paper

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I**4** ►I

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

¹Met Office Hadley Centre, Exeter, UK

²NCAS-Climate-Chemistry, Cambridge University, UK

^{*}now at: National Institute of Water and Atmospheric Research, Lauder, New Zealand
**now at: Lancaster Environment Centre, Lancaster University, UK

now at: Reading University, Reading, UK

In this paper, we present a description of the tropospheric chemistry component of the UK Chemistry and Aerosols (UKCA) model which has been coupled to the Met Office Hadley Centre's HadGEM family of climate models. We assess the model's transport and scavenging processes, in particular focussing on convective transport, boundary layer mixing, wet scavenging and inter-hemispheric exchange. Simulations with UKCA of the short-lived radon tracer suggest that modelled distributions are comparable to those of other models and the comparison with observations indicate that apart from a few locations, boundary layer mixing and convective transport are effective in the model as a means of vertically re-distributing surface emissions of radon. Comparisons of modelled lead tracer concentrations with observations suggest that UKCA captures surface concentrations in both hemispheres very well although there is a tendency to underestimate the observed geographical and interannual variability in the Northern Hemisphere. In particular, UKCA replicates the shape and absolute concentrations of observed lead profiles, a key test in the evaluation of a model's wet scavenging scheme. The timescale for inter-hemispheric transport, calculated in the model using a simple krypton tracer experiment, does appear to be long relative to other models and could indicate deficiencies in tropical deep convection and/or insufficient boundary layer mixing. We also describe the main components of the tropospheric chemistry and evaluate it against observations and other tropospheric chemistry models. In particular, from a climate forcing perspective, present-day observed surface methane concentrations and tropospheric ozone concentrations are reproduced very well by the model, thereby making it suitable for long centennial integrations as well as studies of biogeochemical feedbacks. Results from both historical and future simulations with UKCA tropospheric chemistry are presented. Future projections of tropospheric ozone vary with the Representative Concentration Pathway (RCP). In RCP2.6, for example, tropospheric ozone increases up to 2010 and then declines by 13% of its year-2000 global

GMDD

Discussion Paper

Discussion Paper

Discussion Paper

Discussion

Pape

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

14

NI.

4

>

Back

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

1744

mean by the end of the century. In RCP8.5, tropospheric ozone continues to steadily

Discussion Paper

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

rise throughout the 21st century, with methane being the main driving factor. Finally, we highlight aspects of the UKCA model which are undergoing and/or have undergone recent developments and are suitable for inclusion in a next-generation Earth System Model.

Introduction

Atmospheric chemistry, aerosols, and the biosphere are important features of the Earth System (ES). The atmospheric abundance and lifetime of many greenhouse gases, such as methane (CH_4) and nitrous oxide (N_2O) , depend on atmospheric chemistry. Likewise, heterogeneous chemistry involving reactive chlorine from chlorofluorocarbons (CFCs) causes stratospheric ozone (O₃) depletion with implications for surface ultraviolet radiation (Madronich et al., 1998) and stratospheric dynamics (e.g. Butchart et al., 2003). Of significant importance in the troposphere are reactive gases such as carbon monoxide (CO), nitrogen oxides (NO_x = NO + NO₂), and volatile organic compounds (VOCs) which do not have a direct radiative effect but still influence the climate indirectly by affecting the abundance of greenhouse gases such as CH₄ and tropospheric O₃. Atmospheric chemistry in the ES also influences climate through the formation of inorganic and organic aerosols (e.g. Seinfeld and Pandis, 2006). Together, tropospheric O₃, NO_x, sulphur dioxide (SO₂), and aerosols contribute to poor air quality and have detrimental impacts on human health (e.g. WHO, 2003) and/or natural and managed ecosystems (e.g. Ashmore, 2005).

The role of feedbacks, such as chemistry-climate and chemistry-biosphere feedbacks, is also being recognised (e.g. Johnson et al., 2001; Sitch et al., 2007) and ES models (ESMs) increasingly include aspects of atmospheric chemistry. For example, climate change influences the timescale of stratospheric O₃ recovery (e.g. Waugh et al., 2009) and may affect future surface O₃ concentrations through changes in vegetation and biogenic VOC emissions (e.g. Sanderson et al., 2003). As a result, there is a need to implement stratospheric, tropospheric, and troposphere-stratosphere

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract

References

Figures

Printer-friendly Version

Interactive Discussion

chemistry and aerosol schemes into climate models to understand and quantify interactions between climate, atmospheric composition, and other Earth-System components such as vegetation and hydrology.

To address this increasing need, the objective of the UK Chemistry and Aerosols (UKCA) project is to develop a state-of-the-art chemistry and aerosol model, capable of simulating atmospheric composition from the troposphere to the upper stratosphere. The various configurations of UKCA are described and evaluated in a series of papers. Part 1 of this series, by Morgenstern et al. (2009), provided a detailed description and evaluation of the stratospheric configuration of UKCA. It was used to explore the impact of the Montreal Protocol on climate by Morgenstern et al. (2008). Furthermore, the stratospheric configuration participated in the recent Stratospheric Processes and their Role in Climate (SPARC) Report on the Evaluation of Chemistry-Climate Models (Eyring et al., 2010a) and was used in the World Meteorological Organization (WMO) ozone assessment (WMO, 2011). Part 3 of the series, by Mann et al. (2013), will focus on the aerosol component of UKCA, called GLOMAP-mode. Part 4 will discuss an extension to the tropospheric chemistry scheme with enhanced coupling between the atmosphere and biosphere (Folberth et al., 2013). This paper is Part 2 of the series and will focus on the gas-phase tropospheric chemistry configuration of UKCA in a chemistry-climate model. The climate model has already been used by O'Connor et al. (2009) to evaluate the interactions between climate model biases and tropospheric chemistry. Telford et al. (2010) used this configuration to explore the impact of climate-induced changes by the Pinatubo volcanic eruption on biogenic emissions and atmospheric composition. More recently, Archibald et al. (2011) explored the impacts of odd hydrogen regeneration and recycling in the oxidation of isoprene for past, present, and future atmospheres using this configuration. It has also been used in all centennial simulations of the Hadley Centre's ESM HadGEM2-ES (Collins et al., 2011) for the fifth Coupled Model Intercomparison Project (CMIP5) and in the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP; Lamarque et al., 2012). In this paper, we provide a more detailed description and evaluation of the tropospheric

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Introduction **Abstract**

Conclusions References

Figures

Back

6, 1743–1857, 2013

troposphere

UKCA: The

GMDD

F. M. O'Connor et al.

The climate models, HadGEM1 and HadGEM2

of the UKCA model.

The UK Chemistry and Aerosol (UKCA) model has been successfully coupled to a number of Met Office Hadley Centre climate models, HadGEM1 (Johns et al., 2006; Martin et al., 2006) and HadGEM2 (The HadGEM2 Development Team: Martin et al., 2011; Collins et al., 2011), all of which are based on the UK Met Office's Unified Model (MetUM). The configuration used here is an atmosphere-only version of HadGEM2 with sea surface temperature and sea ice datasets taken from the second Atmosphere Model Intercomparison Project (www-pcmdi.llnl.gov/projects/amip); the resolution was N96L38. For a detailed description and evaluation of the N96L38 configuration of HadGEM2, and how it differs from HadGEM1, the reader is referred to the paper by The HadGEM2 Development Team: Martin et al. (2011).

chemistry configuration of the UKCA model. In Sect. 2, we will introduce the climate models to which UKCA has been coupled. We will then assess aspects of the tracer

transport which form the basis of UKCA in Sect. 3. In Sect. 4, we will describe the two

tropospheric chemistry schemes in this configuration of UKCA and in Sect. 5, we will compare UKCA to both observations and other chemistry models. Results from the transient CMIP5 integrations using the HadGEM2-ES ESM which included the tropo-

spheric chemistry configuration of UKCA are presented in Sect. 6. Finally, in Sect. 7, we

discuss the results, draw some conclusions about UKCA's current performance, and

provide a summary of ongoing developments which will be included in future versions

Tracer transport and physical processing

The coupling between the UKCA chemistry-aerosol model and the HadGEM models is based on MetUM. UKCA uses components of the Unified Model for the large-scale advection, convective transport, and boundary layer mixing of its chemical and aerosol

Title Page Introduction Abstract Conclusions References **Figures** Back

> Full Screen / Esc **Printer-friendly Version**

Interactive Discussion

1747

Discussion Paper

tracers. The large-scale transport is based on the new dynamical core implemented in MetUM by Davies et al. (2005) with semi-Lagrangian advection with conservative and monotone treatment of tracers (Priestley, 1993). Tracers in the boundary layer are mixed using the boundary layer scheme from Lock et al. (2000) which includes a representation of non-local mixing in unstable layers and an explicit entrainment parameterization. Convective transport is treated according to the mass-flux scheme of Gregory and Rowntree (1990) with extensions described in Martin et al. (2006).

In the development phase of chemistry-climate models and chemistry transport models, simple tracer experiments (e.g. Rind and Lerner, 1996; Jacob et al., 1997; Rasch et al., 2000) are useful as a means of assessing some of the dynamical processes of the base models. Here, we perform a number of experiments to evaluate the convective transport, wet scavenging, inter-hemispheric transport, and boundary layer mixing in the HadGEM2-UKCA coupled model. Furthermore, an inert tracer is used to evaluate the degree to which global tracer mass is conserved. Before we describe and evaluate the tracer transport experiments, a brief description of the wet and dry deposition schemes that are employed in the model are outlined in the following sections.

Dry deposition

The process by which chemical species are transferred to the surface and removed from the atmosphere in the absence of precipitation is represented in the tropospheric chemistry configuration of UKCA by one of two dry deposition schemes. The first scheme uses prescribed deposition velocities at 1 m above the ground (Ganzeveld and Lelieveld, 1995; Sander and Crutzen, 1996; Giannakopoulos, 1998, and references therein), which are then extrapolated to the mid-point of the lowest model level according to Sorteberg and Hov (1996). This scheme was used in the tracer experiment assessing wet scavenging in Sect. 3.4 and matches what was evaluated in the TOM-CAT chemical transport model (CTM) by Giannakopoulos (1998) and Giannakopoulos et al. (1999).

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract Conclusions References **Figures**

Back

Full Screen / Esc

Discussion Pape

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

The preferred dry deposition scheme in UKCA is analogous to an electrical circuit, in which the transport of material to the surface is governed by three resistances, r_a , $r_{\rm h}$, and $r_{\rm c}$ in series and the deposition velocity $V_{\rm d}$ (ms⁻¹) is related to the resistances as follows (Wesely, 1989):

$$V_{\rm d} = \frac{1}{r_{\rm t}} = \frac{1}{r_{\rm a} + r_{\rm b} + r_{\rm c}}$$

A full description of this representation of dry deposition is given by Seinfeld and Pandis (2006) and Smith et al. (2000) and is only briefly described here. The first resistance, $r_{\rm a}$, the so-called aerodynamic resistance, represents the resistance to transport of material through the boundary layer to a thin layer of air just above the surface. The second resistance term, $r_{\rm h}$, called the quasi-laminar resistance, refers to the resistance to transport through the thin layer of air close to the surface. Finally, the third resistance, r_c , is called the surface or canopy resistance and represents the resistance to uptake at the surface itself. It is dependent on the chemical and physical properties of the species as well as the absorbing surface. Under ideal conditions, r_c can be related to surface conditions, time of day, and season. It is often represented by further application of the electrical resistance analogy and is called the "Big-leaf" model (Smith et al., 2000; Seinfeld and Pandis, 2006). This is illustrated schematically in Fig. 1. The multiple resistances are calculated for the 9 surface types considered within a grid box and are then combined to give a grid-box mean deposition velocity and a first order loss rate. However, not all the terms will be non-zero at a particular grid box and a particular time. In vegetated areas, for example, plant stomata open during daylight hours and deposition to the interior of the plant via the stomata can occur. This acts as a major daytime sink for O₃. At night, the stomata are closed and the major loss is to the cuticles and underlying soil. An important difference between the two dry deposition schemes is that the dry deposition loss rates are only applied in the bottom model level with the first scheme but applied in all model levels within the boundary layer with the second scheme. This second scheme has been implemented in UKCA in a similar way to its

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract** References

Figures

Back

3.2 Wet deposition

The wet deposition scheme in UKCA for the tropospheric gas-phase species is the same scheme as was implemented and validated in the TOMCAT CTM by Giannakopoulos (1998) and Giannakopoulos et al. (1999). It is parameterized as a first order loss rate, calculated as a function of the climate model's three-dimensional convective and large-scale precipitation. It follows a scheme originally developed by Walton et al. (1988). At each grid box, the scavenging rate *r* can be written as follows:

$$r = S_j \times p_j(I)$$

where S_j is the scavenging co-efficient for precipitation type j (cm⁻¹) and $p_j(l)$ is the precipitation rate for type j (convective or large-scale) from model level l (cmh⁻¹). The scheme uses the scavenging co-efficient values for HNO₃ proposed by Penner et al. (1991) i.e. $2.4 \, \mathrm{cm}^{-1}$ and $4.7 \, \mathrm{cm}^{-1}$ for large-scale and convective precipitation, respectively, but which are scaled down for the individual species by the fraction of each species in the aqueous phase. The fraction in the aqueous phase, f_{aq} , from Henry's Law is as follows:

$$f_{aq} = \frac{L \times H_{eff} \times R \times T}{1 + L \times H_{eff} \times R \times T}$$

where L is the liquid water content, R is the gas constant, T is temperature, and $H_{\rm eff}$ is the effective Henry's co-efficient. $H_{\rm eff}$ not only depends on the solubility of a species, but also includes the effects of dissociation and complex formation. Tables 1 and 2 show the parameters required to calculate the fraction of each soluble species in the aqueous phase for the two tropospheric chemistry schemes that will be described here.

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Conclusi

References

Introduction

Tables

Abstract

Figures

I∢

►I

•

•

Back

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

1750

Discussion Pape

Printer-friendly Version

Interactive Discussion

It is also assumed that precipitation type *j* only occurs over a fraction of the grid box. This fraction is taken to be 1.0 and 0.3 for large-scale and convective precipitation, respectively, and is taken into account when calculating a grid-box mean scavenging rate for both types of precipitation which are then added together. The scheme is evaluated fully using a lead-210 (²¹⁰Pb) tracer experiment in Sect. 3.4.

3.3 Convective transport and boundary layer mixing

We assess the dynamical performance of HadGEM2 by separating the dynamics of the model from the chemistry by using an inert species. The short-lived radioisotope radon-222 (²²²Rn) is such a tracer and simulations of ²²²Rn have been extensively used to evaluate convective and synoptic-scale processes in global models (e.g. Rind and Lerner, 1996; Jacob et al., 1997; Stevenson et al., 1998; Collins et al., 2002; Hauglustaine et al., 2004) and to a lesser extent in regional models (e.g. Lin et al., 1996; Chevillard et al., 2002). It is emitted from non-frozen soils due to radioactive decay of radium-226 (226 Ra). Although emissions of 222 Rn depend on soil and meteorological conditions, a very simple emission scenario is used here. Surface ²²²Rn emissions are prescribed as 1.0 atom cm⁻² s⁻¹ over all land between 60° S and 60° N except Greenland and emitted into the lowest model layer. This prescribed emission rate matches the best mean estimate of 1.2 atom cm⁻² s⁻¹ from a compilation of radon flux measurements by Turekian et al. (1977). Emissions between 60° and 70° N are specified as 0.5 atom cm⁻² s⁻¹ (to account for soil freezing) with no emissions poleward of 60° S and 70° N. Emissions from oceanic regions are approximately two orders of magnitude lower than land emissions (Broecker et al., 1967) and are neglected here, giving a global annual total emission of 15 kgyr⁻¹. These emissions match those used in the intercomparison study of Rasch et al. (2000). Due to its lack of solubility in water, loss of ²²²Rn from the atmosphere is solely by radioactive decay (through a number of short-lived daughters) to ²¹⁰Pb with a half-life of 3.8 days.

Two additional tracers were included in the simulation. Both represent the daughter product of ²²²Rn, ²¹⁰Pb. The first ²¹⁰Pb tracer accumulates in the atmosphere to test

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract** Reference

Figures

Full Screen / Esc

(

6, 1743–1857, 2013

GMDD

UKCA: The troposphere

F. M. O'Connor et al.

Printer-friendly Version

Interactive Discussion

global mass conservation (Sect. 3.5). The second ²¹⁰Pb tracer is removed from the atmosphere through wet scavenging processes (Sect. 3.4) and dry deposition (Sect. 3.1). All the tracers were initialised to zero and allowed to spin up and the simulation was then run for 5 yr. An additional experiment was also run for 5 yr, in which the mixing of ²²²Rn by the boundary layer scheme was switched off, thereby enabling the relative importance of boundary layer mixing and convective transport to be assessed.

For ease of comparison with other models, units of 10⁻²¹ mol mol⁻¹, equivalent to 1.52 pCi m⁻³ at standard temperature and pressure (STP), are used. Figure 2 shows the multi-annual zonal mean distribution of ²²²Rn from the two experiments for the June-July-August (JJA) period. It shows that for the control experiment, the zonal mean distribution from UKCA is similar to the models that participated in the World Climate Research Program (WCRP) intercomparison (Jacob et al., 1997) and other models (e.g. Dentener et al., 1999; Hauglustaine et al., 2004). Surface concentrations show a maximum in the northern mid-latitudes of 20-30 × 10⁻²¹ mol mol⁻¹, in close agreement with Jacob et al. (1997). From the UKCA distribution, there is evidence of deep convection in the tropics, mid-level convection at northern mid-latitudes, and meridional gradients in the lower and mid troposphere. In the model intercomparison of Jacob et al. (1997), the GISS model showed a secondary maximum in the tropical upper troposphere due to frequent deep convection; a similar feature is evident in UKCA albeit less pronounced. When boundary layer mixing was switched off (Fig. 2b), concentrations at the surface exceed 50 × 10⁻²¹ mol mol⁻¹ and tropical upper tropospheric concentrations only reach a maximum of 2 ×10⁻²¹ mol mol⁻¹. In the study by Stockwell et al. (1998), they found that if the planetary boundary layer was not well mixed, this affected the amount of ²²²Rn which could be lifted aloft in convective updrafts. This experiment with UKCA clearly indicates the role of boundary layer mixing in determining the vertical re-distribution of ²²²Rn from its source regions.

Figure 3 shows a comparison of climatological surface ²²²Rn observations with UKCA modelled concentrations at a number of different surface sites, spanning the latitude range 53°N to 67°S, and including coastal (e.g. Mace Head), continental (e.g.

Interactive Discussion

Socorro), and remote marine (e.g. Amsterdam Island) sites. There are some stations where the model performs well (e.g. Amsterdam Island, Bermuda). At the remote site of Amsterdam Island, local emissions do not influence the observation site and these measurements can be considered truly representative of long-range transport from Africa (Dentener et al., 1999). In this case, UKCA matches the observed concentrations quite well. Bermuda, on the other hand, is a surface site where concentrations are sensitive to planetary boundary layer ventilation (Allen et al., 1996). The observed seasonality and the absolute monthly mean concentrations are captured by UKCA particularly well. At the continental site of Socorro, there is an observed autumn to winter increase associated with seasonality in emissions and/or mixing by Allen et al. (1996). UKCA captures the wintertime observations quite well. However, it fails to capture the correct seasonal cycle or the observed autumn to winter increase but no seasonality in emissions was taken into account. At Bombay, UKCA significantly overestimates surface concentrations by a factor of 2 during winter, suggesting that there is insufficient ventilation out of the boundary layer in that region. UKCA also doesn't capture the correct seasonal cycle at Dumont d'Urville although it manages to simulate concentrations comparable to the observed concentrations during JJA. Other models also do poorly at this location (e.g. Hauglustaine et al., 2004) and Josse et al. (2004) have attributed this in the MOCAGE model to the lack of penetration of polar storms onto the continent due to sea-ice extent. Some studies have also indicated that the use of a northwardsdecreasing emission source between 30 and 70°N could improve simulations in the Northern Hemisphere (Conen and Robertson, 2002; Gupta et al., 2004), particularly north of 50° N (Robertson et al., 2005). This may well improve the simulations from UKCA at Chester and Socorro but is likely to make comparisons at Mace Head worse. Overall, the performance of the UKCA simulations suggest that there may be insufficient boundary layer ventilation at some locations in the Northern Hemisphere.

A comparison of modelled and measured vertical profiles of ²²²Rn at two different locations can be seen in Fig. 4. The observations from Moffett Field, California (37.4° N, 122.0° W) were taken onboard 11 flights in the June-August 1994 time period (Kritz **GMDD**

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract**

Conclusions References

Figures

Back

Interactive Discussion

et al., 1998). Of the 11 flights, only 1 took place during July and the modelled profiles were taken from June and August only. UKCA overestimates ²²²Rn concentrations at the surface over Moffett Field; this may be attributed to the limited horizontal resolution of the model when comparing with measurements taken at a coastal site where strong horizontal gradients exist (Stockwell et al., 1998). Above the boundary layer, the UKCA model is in very close agreement with the observed concentrations between 2 and 10 km. However, it fails to capture the enhanced concentrations at 11-13 km, associated with long-range transport of Asian air following deep convection (Stockwell et al., 1998). This discrepancy has been found in other models (e.g. Stockwell et al., 1998; Gupta et al., 2004) and could be related to a lack of deep convection over Asia, insufficient long-range transport from Asia, and/or an underestimate in the Asian emissions in the simple emissions scenario used here (Jacob et al., 1997; Dentener et al., 1999).

The Nova Scotia measurements were taken during 9 North Atlantic Regional Experiment (NARE) flights over the North Atlantic Ocean and close to Nova Scotia and New Brunswick, Canada, between 16 and 31 August 1993 (Zaucker et al., 1996). For comparison purposes, the modelled profiles are multi-annual means for August only. The UKCA model replicates the observed shape of the vertical profile and the magnitude of the observed concentrations in the 2-5 km region very well. It underestimates concentrations in the lowest 1 km, although the observations show a great deal of variablity there. Enhanced concentrations were observed at 5-6 km but UKCA indicates a minimum at 6 km and place the enhancement aloft. However, on the whole, the performance of the UKCA model in relation to the vertical profiles of ²²²Rn is very good.

Further evaluation of tropical deep convection in MetUM in comparision with observations and other models has been carried out by Russo et al. (2011) and Hoyle et al. (2011).

Wet scavenging

As was mentioned in Sect. 3.3, the ²²²Rn experiment above included the daughter product, ²¹⁰Pb, which was subject to wet and dry deposition. Dry deposition velocities

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract**

Conclusions References

Figures

Back

Full Screen / Esc

Back

at 1 m were prescribed as follows: $0.2 \, \mathrm{cm \, s}^{-1}$ over land and $0.05 \, \mathrm{cm \, s}^{-1}$ over the ocean (Balkanski et al., 1993) and extrapolated to the mid-point of the lowest model level according to Sorteberg and Hov (1996) assuming neutral stability conditions. For wet deposition, ²¹⁰Pb is assumed to attach itself to soluble sub-micron aerosols and scavenging was treated as a first-order loss process as described in Sect. 3.2. For the scavenging co-efficients, we used values of 2.4 cm⁻¹ for dynamic precipitation and 4.7 cm⁻¹ for convective precipitation, which are appropriate for highly soluble gaseous species such as HNO₃ (Penner et al., 1991). Radioactive decay of ²¹⁰Pb (half-life of 22.3 vr) was not taken into account.

In order to assess the modelled surface ²¹⁰Pb concentrations, climatological observations were obtained at 20 global sites spanning latitudes 90° S-77° N from the Surface Air Sampling Program database of the Environmental Measurements Laboratory (EML) (http://www.nbl.doe.gov/htm/EML_Legacy_Website/databases.htm). Figures 5 and 6 show comparisons of multi-annual surface ²¹⁰Pb concentrations from UKCA with climatological observed surface ²¹⁰Pb concentrations in the Northern and Southern Hemispheres, respectively. They show that the UKCA model is in excellent agreement with the measurements in terms of the seasonal cycle and absolute concentrations at some sites (e.g. Moosonee, Beaverton, Chester, and Cape Grim). At Barrow, for example, UKCA correctly simulates the wintertime maximum associated with long-range boundary layer transport of Eurasian air which gives rise to the Arctic haze phenomenon (Barrie, 1986). At Kap Tobin, UKCA does not simulate the seasonal cycle indicated by the observations. However, the measurement record at this site is quite short (approximately 2 yr) relative to the other surface sites. The UKCA model also tends to underestimate surface ²¹⁰Pb concentrations and fails to capture the seasonal cycle at the South Pole; this was also evident in the 15 models that participated in the WCRP workshop of 1995 (Rasch et al., 2000).

A further assessment of UKCA's wet scavenging is carried out by comparing modelled multi-annual mean surface ²¹⁰Pb deposition fluxes with the global gridded dataset of Preiss and Genthon (1997). This dataset is based on the previously compiled

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Abstract

Introduction

Reference

Title Page

Figures

Printer-friendly Version

Interactive Discussion

database by Preiss et al. (1996) except that it has been reduced and aggregated onto a 5° × 5° grid, thus making it more convenient for model-observation comparisons. Figure 7 shows a scatter plot of UKCA modelled multi-annual mean surface ²¹⁰Pb deposition fluxes and observed fluxes. The correlation co-efficient between modelled and measured deposition fluxes is fairly high at 0.69. However, there is considerable scatter about the 1:1 line, indicating some large regional discrepancies (e.g. Northern Hemisphere tropics and mid-latitudes). Some of these could be related to precipitation biases in the climate model (Martin et al., 2006, 2010). However, they could also be related to regional variability in ²²²Rn emissions not represented in the UKCA model simulation. Figure 8 shows the global distribution of the modelled global multi-annual mean deposition terms from each of the deposition processes in addition to the total deposition obtained from the 5-yr simulation. The contributions from the various processes were found to be as follows: dry deposition 9.5%, dynamic scavenging 17.8%, and convective scavenging 72.7%, and are reasonably consistent with other estimates (e.g. 14, 12, and 74% for dry deposition, dynamic scavenging, and convective scavenging, respectively, from Balkanski et al., 1993).

Guelle et al. (1998a) concluded that it is necessary to compare with vertical profiles of ²¹⁰Pb to discriminate between wet deposition schemes. As a result, we make use of ²¹⁰Pb measurements taken onboard 16 flights of the NASA DC-8 aircraft during the Global Tropospheric Experiment/Pacific Exploratory Mission-West B (GTE/PEM-West B) campaign which took place during February and March 1994 (Dibb et al., 1997). Following Dibb et al. (1996), the measurements from PEM-West B were separated into two geographic regions: "remote Pacific" and "near Asia". For the purposes of comparing with the observations, multi-annual February and March monthly mean concentrations from UKCA were averaged over the regions: 10-30° N, 140-150° E and 20-45° N, 120-145° E. Figure 9 shows the comparison of UKCA with the observed profiles over these regions. Given that UKCA is not running with the specific meteorology associated with PEM West-B, the comparison is only intended to be a general comparison of the calculated profiles. However, it is expected that the measured profiles lie within the variability

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract

Introduction

References

Figures

Back

GMDD 6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract** Conclusions References **Figures** Back Full Screen / Esc

Printer-friendly Version

Interactive Discussion

indicating that the model drift due to global non-conservation of tracers is guite small. Inter-hemispheric transport 3.6

Global mass conservation

With the majority of anthropogenic emissions originating north of the equator, interhemispheric transport plays an important role in re-distributing pollutants from the Northern to the Southern Hemisphere. A model's ability to simulate inter-hemispheric transport accurately and with the correct timescale has implications for modelling meridional gradients of long-lived tracers and the accuracy of source estimates by

(spatial and temporal) of the modelled profiles. For the "remote Pacific", UKCA matches the absolute mean ²¹⁰Pb concentrations and the shape of the observed profile partic-

ularly well. In particular, scavenging during PEM-West B was dominated by dynamic

scavenging (Guelle et al., 1998a) and the results suggest that the climate model's dynamic precipitation and UKCA's wet scavenging scheme are performing well. For the "near Asia" comparison, the modelled concentrations and the shape of the modelled

profile from UKCA again closely match those of the observations. These comparisons,

albeit limited, suggest that the wet scavenging in UKCA by dynamic and convective

precipitation is reasonable. Guelle et al. (1998a) concluded that the scheme used by Balkanski et al. (1993) and extended by Guelle et al. (1998b) to take account of sizedistributed aerosols was better than that of Walton et al. (1988). Although we haven't

tested multiple scavenging schemes within UKCA, these comparisons suggest that the performance of the Walton et al. (1988) scheme in UKCA is satisfactory and compara-

By examining the timeseries of the accumulated burden of the second (non-deposited) ²¹⁰Pb tracer and comparing it with the accumulated ²²²Rn emissions, the global mass conservation of a tracer can be assessed. It was found that the rate of increase of this inert tracer was less than 0.008 % per year compared to the accumulated emissions,

ble to that from other models (e.g. Guelle et al., 1998a; Hauglustaine et al., 2004).

1757

Interactive Discussion

inverse modelling (e.g. Houweling et al., 1999; Chen and Prinn, 2006). Meridional surface observations of long-lived tracers of Northern Hemisphere origin have been used to estimate the timescale for inter-hemispheric exchange (e.g. Weiss et al., 1983). However, estimates from three-dimensional fields tend to be more accurate (Jacob et al., 1987; Levin and Hesshaimer, 1996; Denning et al., 1999). The timescale for interhemispheric transport from a number of model studies has been estimated to be of the order of one year (Prather et al., 1987; Jacob et al., 1987; Rind and Lerner, 1996; Levin and Hesshaimer, 1996) but intercomparisons indicate that models reproduce this timescale with varying degrees of success (e.g. 0.55-1.26 yr from three-dimensional fields in Denning et al., 1999).

A number of different long-lived tracers, such as CFCs, sulphur hexafluoride (SF₆), and Krypton-85 (85Kr), have been used to assess inter-hemispheric transport, Here, we use the classical ⁸⁵Kr experiment, as discussed by Jacob et al. (1987), to estimate the timescale for inter-hemispheric exchange in the UKCA model. 85Kr, produced during reprocessing of nuclear fuel, was emitted from seven known point sources and one estimated point source in the Northern Hemisphere during the period 1978-1983. The integration itself was started on 1 September 1978 with initial mass mixing ratios taken from Rind and Lerner (1996) and scaled to give a global burden in kg of M = 166.2 +5.10(T - 1980.0), where T is the initialisation time in yr. In this way, the initial global burden agreed with that estimated by Jacob et al. (1987). The only sink for ⁸⁵Kr was radioactive decay to Rubidium-85 (85Rb) with a half-life of 10.76 yr.

Before inter-hemispheric transport can be assessed, the model simulation itself was verified against that of Jacob et al. (1987). For example, it was found that the rate of change of the global burden of ⁸⁵Kr during the 1978–1983 period was comparable to that of Jacob et al. (1987). UKCA model results show that in the Northern Hemisphere winter, there are extensive areas north of 45° N with surface concentrations in excess of 23 pCim⁻³ at STP. By contrast, in the Northern Hemisphere summer, modelled concentrations greater than 23 pCim⁻³ at STP were only found over a limited region within Europe. These wintertime maxima can largely be attributed to the lack of convective

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract**

References

Figures

Back

Discussion Paper

Interactive Discussion

activity in the Northern Hemisphere winter, resulting in high ⁸⁵Kr plumes being vertically confined to the lower troposphere. This winter/summer contrast was also evident in the ⁸⁵Kr model results of Jacob et al. (1987) and Hauglustaine et al. (2004) and in other modelling studies (e.g. Prather et al., 1987; Wang and Shallcross, 2000).

The UKCA model results can be further verified by comparison with observations. Nine meridional profiles of ⁸⁵Kr were measured during ship cruises in the Atlantic Ocean between 1980 and 1987 by W. Weiss and reported by Jacob et al. (1987). Model results are shown for two longitude bands (7.5 and 30° W) which bracket the measurements. The comparison in March (Fig. 10a) shows that UKCA captures the homogeneous meridional profile in the Southern Hemisphere and the more spatially variable profile in the Northern Hemisphere indicated by the observations. The model's meridional gradient seems guite robust in all model years and occurs at approximately 0° N. This matches guite well with the observed tropical gradient. The comparison for October (Fig. 10b) shows that there is a good correspondence between modelled and measured concentrations for October 1980, suggesting that the initial mass mixing ratio field used was reasonable. However, the tropical gradient in the model is shifted equatorward by about 10° in comparison with the observations. This was also the case in the evaluation of the LMDz-INCA model by Hauglustaine et al. (2004), and was attributed to a reduced seasonal cycle in the Intertropical Convergence Zone (ITCZ) location. For October 1983, modelled concentrations in the Southern Hemisphere appear too high, the tropical gradient is again shifted equatorward, and the low observed concentrations at 40° N are not well simulated. Nevertheless, the modelled inter-hemispheric difference in the surface concentrations matches the observed inter-hemispheric difference and as a result, the modelled three-dimensional concentrations can be used to evaluate a timescale for inter-hemispheric exchange.

In an idealised two-box model, the inter-hemispheric difference in mean concentration, C_{ns} , evolves with time according to Jacob et al. (1987):

$$\frac{dC_{\rm ns}}{dt} = \frac{E}{1.96} - C_{\rm ns} \times \left(2t_e^{-1} + t_d^{-1}\right)$$

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

. . .

Abstract Introduction

Title Page

nclusions References

Tables Figures

14

▶

Back Close

Full Screen / Esc

where $C_{ns} = C_n - C_s$ is the difference between the mean northern and southern hemispheric concentrations (in pCim⁻³ at STP), E is the emission rate (in MCiyr⁻¹), t_e is the inter-hemispheric transport timescale (in yr), t_d is the e-folding lifetime (in yr) and the 1.96 is a conversion factor to relate a mean hemispheric concentration in $pCim^{-3}$ (STP) to a hemispheric inventory in MCi. If C_{ns} reaches a steady state, then the inter-hemispheric transport timescale can be computed from the steady state value of C_{ns} as follows:

$$t_e = \left(\frac{E}{3.92 \times C_{\rm ns}} - \frac{1}{2t_d}\right)^{-1}$$

In this experiment, C_{ns} was reasonably stable throughout the integration i.e. the slope of a least squares linear fit to the timeseries of C_{ns} was $-0.02 \,\mathrm{pCim}^{-3}$ (STP) yr^{-1} with a mean value for C_{ns} of 2.01 pCim⁻³ (STP) during the years 1979–1983. Taking a mean emission rate of 6.33 MCi yr⁻¹ for the years 1978–1983, the inter-hemispheric transport timescale was estimated to be 1.3 yr. This UKCA-derived timescale is larger than the value of 1.1 yr estimated by Jacob et al. (1987) and at the upper end of the range of estimates from Denning et al. (1999) but close to that estimated from CFC and 85Kr experiments in the Goddard Institude for Space Studies (GISS) model by Rind and Lerner (1996).

Prather et al. (1987) found that cross-equatorial transport occurs primarily in the tropical upper troposphere and is associated with deep convection. The mechanistic analysis by Hartley and Black (1995) also found that convective outflow rather than Rossby waves was the dominant mechanism for cross-equatorial transport and is supported by the more recent study of Lintner et al. (2004). However, the model intercomparison of SF₆ simulations by Denning et al. (1999) found that models which compare favourably with observations in the remote marine boundary layer tended to overestimate observed concentrations at Northern Hemisphere continental sites. They deduced that boundary layer mixing rather than meridional transport may be the dominant control on simulating the meridional gradient of long-lived tracers of Northern Hemisphere

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page **Abstract** Introduction

Reference

Figures

Interactive Discussion

Discussion Paper

Interactive Discussion

origin. Given this sensitivity to boundary layer mixing, Law and Corbin (2009), using an atmosphere-only version of HadGEM2 at N48L38, tested the sensitivity of carbon dioxide and SF₆ transport to the stability dependence of the vertical transport in the stable boundary layer. Irrespective of their choice of function for parameterizing mixing within 5 a stable boundary layer, the inter-hemispheric difference in SF₆ was still too large and they inferred that inter-hemispheric transport in the N48 version of HadGEM2 was too slow. A simulation of ⁸⁵Kr with UKCA at a horizontal resolution of N48 gave idential values to those computed for N96 above and confirms their conclusions. Moreover, Martin et al. (2006) found that in HadGAM1, meridional winds, particularly at upper levels, were worse and there was less boundary layer mixing at a given stability than in its predecessor, HadCM3 (Gordon et al., 2000). Other contributing factors to the slow inter-hemispheric transport in UKCA may be insufficient mixing within unstable boundary layers and/or deficiencies in tropical deep convection.

Tropospheric chemistry description

Chemistry schemes

Included in this description of the tropospheric configuration of the UKCA model are two chemistry schemes. The first chemistry scheme, called StdTrop, includes a relatively thorough description of inorganic odd oxygen (Ox), nitrogen (NOv), hydrogen (HO_v), and carbon monoxide (CO) chemistry with near-explicit treatment of methane (CH₄), ethane (C₂H₆), propane (C₃H₈), and acetone (CH₃COCH₃) degradation (including formaldehyde (HCHO), acetaldehyde (CH₃CHO), peroxy acetyl nitrate (PAN), and peroxy propionyl nitrate (PPN)). It makes use of 25 tracers and represents 41 species, as indicated in Table 3. The atmospheric constituents H₂, CO₂, O₂, and N₂ have fixed global concentrations. We ignore chemical production and loss of water vapour; instead, it is taken from the climate model on a timestep basis. All remaining

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract** References

Figures

Back

Interactive Discussion

non-advected species are treated in steady state and their concentrations are retained from one timestep to the next.

This chemistry scheme accounts for 25 photolytic reactions (Table 4), 83 bimolecular reactions (Table 5), and 13 uni- and termolecular reactions (Table 6). Reaction rate co-efficients are taken from the 2000-2005 recommendations provided by the International Union of Pure and Applied Chemistry (IUPAC) Subcommittee for Gas Kinetic Data Evaluation (http://www.iupac-kinetic.ch.cam.ac.uk/), versions 2 and 3.1 of the Master Chemical Mechanism (MCM) (Jenkin et al., 1997, 2003; Saunders et al., 1997, 2003; Bloss et al., 2005; Tyndall et al., 2001; Ravishankara et al., 2002). This scheme has previously been used in both the TOMCAT CTM (e.g. Law et al., 1998; Savage et al., 2004) and chemistry-climate integrations (e.g. Zeng and Pyle, 2003, 2005). The non-methane VOCs (NMVOCs) included in StdTrop were found by Saunders et al. (2003) to have low photochemical ozone creation potential (POCP) values (Derwent and Jenkin, 1991) (i.e. in the range of 7.5-55.0) and, as a result, the StdTrop scheme is more representative of the background troposphere rather than a polluted boundary layer.

Alkenes/dienes have the highest POCP values and isoprene (C_5H_8), for example, has a POCP value of 101.6 (Saunders et al., 2003) although its impact depends on the environment. Wang et al. (1998) has also shown that C₅H₈ alone accounts for half of PAN formation and half of the effects of all NMVOCs on NO_x, hydroxyl (OH), and O₃. Emissions of C₅H₈ are comparable in magnitude to methane emissions (Lamb et al., 1993). As a result, the second chemistry scheme implemented in the tropospheric configuration of UKCA, called Troplsop, is an extension of StdTrop to include the extra species and reactions of the lumped C₅H₈ oxidation scheme from the Mainz Isoprene Mechanism (MIM) described by Pöschl et al. (2000). It includes an additional 14 organic species (Table 7), 12 of which are treated as tracers with the remainder treated in steady state. The additional 10 photolytic, 31 bimolecular, and 2 uniand termolecular reactions can be found in Tables 8-10. Reaction rate co-efficients are taken from the 2005 recommendations provided by the International Union of

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract Conclusions References **Figures**

Back

troposphere F. M. O'Connor et al.

Title Page

GMDD

6, 1743–1857, 2013

UKCA: The

Conclusions References

Introduction

Figures

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Pure and Applied Chemistry (IUPAC) Subcommittee for Gas Kinetic Data Evaluation (http://www.iupac-kinetic.ch.cam.ac.uk/), version 3 of the MCM (Saunders et al., 2003; Jenkin et al., 2003), and Pöschl et al. (2000) and references therein. Most of the reactions from the MIM are combinations of the major MCM reaction pathways and the additional species represent different classes of compounds as described in Table 7. This scheme has previously been used in both the p-TOMCAT CTM (Voulgarakis et al., 2009, 2011a) and in chemistry-climate integrations (e.g. Zeng et al., 2008; Young et al., 2009).

In the Pöschl et al. (2000) study, the MIM was found to perform well in comparison with MCMv2 (Jenkin et al., 1997; Saunders et al., 1997); the two mechanisms agreed to within 10 % for O₃, OH, CO, methyl hydroperoxide (MeOOH), and PAN. The TropIsop chemistry scheme, as implemented in UKCA, was also included in a chemical mechanism intercomparison by Emmerson and Evans (2009); the scheme (referred to as TOMCAT in Emmerson and Evans, 2009) was found to show good agreement with MCMv3.1 in simulating both O₃ and OH concentrations, even though all the carbon not represented explicitly in the scheme was lumped into C₃H₈. More recently, Archibald et al. (2010) carried out an intercomparison of C₅H₈ oxidation mechanisms, and found that all existing mechanisms, including MCMv3.1, cannot generate/recycle $\mathrm{HO_{v}}$ at the rates needed to match reported radical observations from high $\mathrm{C_{5}H_{8}/low}$ NO_x environments (Lelieveld et al., 2008; Butler et al., 2008). In addition to insufficient HO_v recycling, other uncertainties in the treatment of C₅H₈ in chemistry models include the strength of the global emission source (e.g. Arneth et al., 2008), chemical lumping (Archibald et al., 2010), treatment of isoprene nitrates (Pöschl et al., 2000; von Kuhlmann et al., 2004), and deposition of intermediate products (von Kuhlmann et al., 2004). Although not considered here, this chemistry scheme has also been extended to include sulphur oxidation and a parameterization for monoterpene oxidation, thus enabling coupling to the aerosol component of the UKCA model, GLOMAP-mode. A description and evaluation of GLOMAP-mode, as implemented in a CTM, can be found in Mann et al. (2010). Part 3 of this series (Mann et al., 2013) will discuss the

1763

Abstract

Discussion Paper

Interactive Discussion

implementation and evaluation of GLOMAP-mode in a global climate model configuration.

The two schemes above, StdTrop and TropIsop, do not include higher NMVOCs than C₃H₈ and C₅H₈. However, details of an extension to Troplsop, called ExtTC, which considers the degradation pathways of C2 and C3 alkenes, C4+ alkanes, terpenes, and aromatics for use in chemistry-climate integrations can be found in Part 4 of the UKCA series by Folberth et al. (2013). Furthermore, a chemistry mechanism which considers some higher NMVOCs than C₃H₈ and C₅H₈ has been implemented in a regional configuration of UKCA for air quality purposes and is discussed in a separate publication (Savage et al., 2012).

Model studies suggest that the heterogeneous loss of the nitrate radical and N₂O₅ can substantially reduce the tropospheric NO_x burden (Dentener and Crutzen, 1993; Evans and Jacob, 2005), and that heterogeneous loss of HO₂ can substantially impact tropospheric HO_x (Mao et al., 2010). However, Shindell et al. (2009) argued that these heterogeneous loss processes only have a very small impact on the radiatively active species O₃ and CH₄. However, development work to introduce a parameterization for the uptake of both N₂O₅ and HO₂ onto aerosols from the GLOMAP-mode scheme (Macintyre and Evans, 2010, 2011) has been completed and will be implemented in a future UKCA chemistry scheme.

The chemical equations in UKCA can be solved using one of two chemical solvers. The first one is an explicit iterative backward Euler approach (Hertel et al., 1993) with a chemical timestep of 5 min as is used in the STOCHEM model (e.g. Johnson et al., 1999; Collins et al., 2002). Alternatively, the chemistry can be treated in a more flexible way using the ASAD framework (Carver et al., 1997), built around a symbolic nonfamilies sparse-matrix Newton-Raphson solver derived from Wild and Prather (2000); it is described in Morgenstern et al. (2009). In this paper, and in the sensitivity study of climate model biases by O'Connor et al. (2009), all model results were derived from the former approach.

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract

References Conclusions

Figures

Back

The tropospheric chemistry schemes can make use of three options in relation to photolysis. In the simplest set up, photolysis rates are calculated offline in the Cambridge 2-D model (Law and Pyle, 1993) using the two-stream approach of Hough (1988). They are read in by UKCA on the first time step of the model integration and interpolated in time and space at each model grid box. Although this treatment gives realistic diurnal and seasonal variations in photolysis rates, there is no variability associated with cloud cover, surface albedo and/or aerosols; the 2-D rates were calculated with a climatological cloud cover and prescribed surface albedo and aerosol loading. One alternative option available in UKCA is the use of Fast-J (Wild et al., 2000) which provides a flexible and accurate scheme for the online calculation of photolysis rates in the presence of both cloud and aerosol layers. It solves the full radiative transfer equations with a reduced expansion of the scattering phase function over a relatively small number of wavelength bins. As well as assessing the accuracy of the calculated photolysis rates from Fast-J relative to clear-sky photolysis rates, Wild et al. (2000) also noted that the upper troposphere is a key region for climate forcing by O₃ and hence, the accurate treatment of photolysis in this region of the atmosphere is critical in chemistry-climate models.

Figure 11 shows the zonal mean photolysis rate for the $NO_2 \rightarrow NO + O(3P)$ reaction for January and July from both the offline 2-D photolysis scheme and Fast-J. Also included are scatter plots comparing the two. Both schemes capture the seasonal, latitudinal, and altitude dependence of $J(NO_2)$. The figure also clearly shows that although there are differences in photolysis rates from the two schemes due to differences in formulation, cloud and aerosol distributions, they are within the spread of photolysis rates from a recent intercomparison of chemistry-climate models (Eyring et al., 2010a). Offline photolysis has been used within UKCA in all the Met Office Hadley Centre's centennial integrations for Phase 5 of the Coupled Model Intercomparison Project (CMIP5) and the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

GMDD

Discussion Paper

Discussion Paper

Discussion Paper

Discussion

Papel

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

nclusions References

Tables Figures

l∢ ⊳i

■

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Pape

GMDD

UKCA: The troposphere

6, 1743–1857, 2013

F. M. O'Connor et al.

Interactive Discussion

simulations using the Earth System version of the HadGEM2 model (Collins et al., 2011; Jones et al., 2011) and is also used in the model integrations being evaluated here. However, Fast-J is used routinely in the context of air quality forecasts from UKCA which are discussed in Savage et al. (2012).

More recently, there has been work to add Fast-JX (Neu et al., 2007) to UKCA. This is an improved version of the original Fast-J scheme, with scattering calculations extended up to the stratosphere and lower mesosphere as well as updates to the treatment of optically thick clouds and in the solar flux and cross-section datasets used. The implementation and use of Fast-JX in comparison with the offline photolysis scheme is evaluated in Telford et al. (2013), in which discrepancies in J(O¹D) between the offline scheme and Fast-JX are discussed.

4.3 Emissions

The land-based anthropogenic, biomass burning, and shipping emissions used in the UKCA simulations being evaluated here make use of year-2000 emissions supplied as part of a new dataset of gridded emissions covering the historical period 1850-2000 (Lamarque et al., 2010). A brief summary of the emissions will be given here. However, for a more complete discussion on the full set of aerosol and O_3 precursor emissions and their application over the historical period in two chemistry-climate models, the reader is referred to Lamarque et al. (2010).

Land-based anthropogenic emissions take account of the following sectors: energy production and distribution, industry, land transport, residential and commercial sources, solvent use, agriculture, agricultural waste burning, waste and waste distribution and were based on a combination of regional (Vestreng et al. (2006) inventory for Europe) and global inventories (e.g. EDGARv32 FT2000 dataset from van Aardenne et al., 2005). Biomass burning emissions consider fires in forests, savanna, and grasslands. They are taken as the mean emissions from the 1997–2006 period from version 2 of the Global Fire Emissions Database (GFEDv2) inventory (van der Werf et al., 2006). Emissions from maritime transport are also considered. Fleet information and

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ◆ I

◆ Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

fuel consumption are taken from Eyring et al. (2010b) and non- CO_2 emission totals for the year 2000 are taken as the mean of previous studies (Corbett and Koehler, 2003; Eyring et al., 2005; Endresen et al., 2003, 2007). They are then distributed globally and monthly using the International Comprehensive Ocean-Atmosphere Data Set (ICOADS; Wang et al., 2008).

The standard tropospheric chemistry scheme, StdTrop, takes account of surface emissions of C_2H_6 , C_3H_8 , CH_4 , CO, HCHO, NO_x , CH_3CHO , and CH_3COCH_3 . A summary is provided in Table 11. For C_2H_6 and C_3H_8 , it was decided to lump all C2 (C_2H_6 , ethene (C_2H_4), and ethyne (C_2H_2)) and C3 (propane and propene (C_3H_6)) species together and treat as emissions of C_2H_6 and C_3H_8 , respectively. As well as emissions from land-based anthropogenic sources, biomass burning and shipping (Lamarque et al., 2010), natural emissions of CH_4 are also included. Those from termites, wetlands, swamps, bogs, and tundra are from Fung et al. (1991) while oceanic and hydrate emissions are distributed temporally and spatially using distributions from Global Emissions Inventory Activity (GEIA; http://www.geiacenter.org/inventories/present.html).

For CO, emissions from Lamarque et al. (2010) are combined with oceanic emissions of CO, whose spatial and temporal distribution were provided by the Global Emissions Inventory Activity (GEIA; http://www.geiacenter.org/inventories/present.html) and are based on distributions of oceanic VOC emissions from Guenther et al. (1995). In the absence of a C_5H_8 degradation scheme, an additional 354 Tg CO yr⁻¹ was added, based on a global mean CO yield of 30 % from C_5H_8 from a study by Pfister et al. (2008) and a global C_5H_8 emission source of 503 Tg C yr⁻¹ (Guenther et al., 1995). It is distributed spatially and temporally based on C_5H_8 emissions from Guenther et al. (1995). The global annual mean emissions for CO are shown in Fig. 12. For HCHO emissions, land-based anthropogenic sources and biomass burning contribute to the global annual total emissions of 9.0 Tg HCHO yr⁻¹.

For NO_x surface emissions, contributions from land-based anthropogenic sources, biomass burning, and shipping from Lamarque et al. (2010) are used. Added to these are a contribution from natural soil emissions, based on a global and monthly

distribution provided by GEIA (http://www.geiacenter.org/inventories/present.html), and based on the global empirical model of soil-biogenic NO_v emissions from Yienger and Levy (1995). For CH₃CHO, the NMVOC biomass burning emissions for the period 1997-2006 from Lamarque et al. (2010) are used. Using emission factors from Andreae and Merlet (2001) for grass fires, tropical forest fires, and extra-tropical forest fires, emissions of NMVOCs are converted into emissions of CH₃CHO, giving a global annual total of 8.7 Tg CH₃CHO yr⁻¹. Finally, emissions of CH₃COCH₃ are added from land-based anthropogenic sources and biomass burning from Lamarque et al. (2010), giving a global annual emission total of 5.7 Tg CH₃COCH₃ yr⁻¹. The dominant source of CH₃COCH₃, however, is from vegetation through direct emissions, production from decomposing plant matter as well as production from terpene oxidation. A global emission strength of 40.0 Tg CH₃COCH₃ yr⁻¹ is used here following von Kuhlmann et al. (2003) which are distributed spatially and temporally based on distributions from Guenther et al. (1995). For the Troplsop chemistry scheme, the emissions are identical to those used by StdTrop except that the additional CO emissions from C₅H₈ oxidation are omitted; instead, a global annual C₅H₈ emission source of 506 Tg C yr⁻¹ (Guenther et al., 1995) is prescribed, onto which a diurnal cycle is imposed based on local solar zenith angle. The use of interactive biogenic emissions in UKCA will be discussed in Folberth et al. (2013).

In addition to surface emissions, three-dimensional emissions of NO_x from aircraft and lightning are also taken into account. Aircraft emissions are taken from the historical dataset compiled by Lamarque et al. (2010) and are concentrated in the Northern Hemisphere and are strongest in the upper troposphere/lower stratosphere (UTLS) region. Lightning emissions of NO_x are also added to UKCA, based on the distribution and frequency of lightning flashes following Price and Rind (1992), Price and Rind (1993), and Price and Rind (1994), where the flash frequency is related to the height of the climate model's convective cloud top. Emissions are added from the surface up to 500 hPa for cloud-to-ground (CG) flashes and from 500 hPa up to the convective cloud top for intracloud (IC) flashes and are related to the discharge energy, with the energy

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Introduction **Abstract**

Title Page

Reference

Figures

Back

Full Screen / Esc

Interactive Discussion

Interactive Discussion

from a CG flash being 10 times higher than that from an IC flash (Price et al., 1997). A scaling factor was also applied to give a global annual emission total of 5 Tg N yr⁻¹. However, this scaling had been evaluated at an early stage of the model development, leading to emissions that were inadvertently too low in this model configuration i.e. $< 2 \text{ TgN yr}^{-1}$ (Young et al., 2012).

4.4 Boundary conditions

In the tropospheric configuration of UKCA using the L38 climate model, the transport and chemistry are calculated interactively up to the model lid at 39 km. Nevertheless, boundary conditions are applied at the top of the model's domain to take account of missing stratospheric processes, such as chlorine and bromine chemistry. The location of a combined isentropic-dynamical tropopause (Hoerling et al., 1993) is diagnosed on a timestep-by-timestep basis. Then, modelled O₃ from UKCA is overwritten in all model levels which are 3-4 km above the tropopause using the time-varying O₃ field that is normally used to drive the climate model's radiation scheme in the absence of chemistry. In the case of the chemistry-climate simulations here, stratospheric O₃ was that recommended for CMIP5 (Cionni et al., 2011). For NO_v, a fixed O₃ to HNO₃ ratio of 1.0/1000.0 kg N/kg O₃ from Murphy and Fahey (1994) is applied to HNO₃ on the same model levels where O₃ is being overwritten. For CH₄, an explicit loss term, scaled to give a global annual loss of approximately 40 Tg CH₄ yr⁻¹, is applied in the 3 uppermost levels to account for stratospheric removal.

In addition to running with CH₄ fully interactive, UKCA also has the option of running with a prescribed global surface CH₄ concentration; this can be a time-invariant or time-varying concentration, depending on the type of model integration being carried out. In the tropospheric UKCA model simulations being evaluated here, CH₄ was fully interactive.

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Abstract

Introduction

Conclusions References

Figures

Back

Full Screen / Esc

Although the UKCA configuration being described here supports two chemistry schemes, StdTrop and TropIsop, the model evaluation here will focus mainly on StdTrop. This is the chemistry scheme that formed part of the Met Office Hadley Centre's ESM HadGEM2-ES (Collins et al., 2011) and was used in all the HadGEM2-ES centennial simulations submitted to CMIP5 (Jones et al., 2011). A total of 10 yr has been simulated using the StdTrop chemistry scheme, with initial concentrations taken from previous integrations of UKCA. Surface and aircraft emissions for the year 2000 were used repeatedly, and CH₄ reached steady state within 2 yr. All 10 yr are used here in the model evaluation. Although the UKCA model simulates over 40 species, the discussion here focuses on key species such as CH₄, CO, NO_x, OH, and O₃, which directly govern the oxidising capacity of the troposphere. For a comparison of TropIsop in UKCA with the G-PUCCINI model and O₃ and CO measurements from the Tropospheric Emission Spectrometer (TES) onboard the Aura satellite, the reader is referred to Voulgarakis et al. (2011b) and Telford et al. (2013). Furthermore, the TropIsop chemistry scheme has been combined with the stratospheric chemistry from Morgenstern et al. (2009) and will be evaluated fully in Archibald et al. (2013).

5.1 Methane (CH₄)

Multi-annual annual mean surface and zonal mean plots of CH_4 from the StdTrop chemistry scheme can be seen in Fig. 13a and b. They indicate that surface concentrations of CH_4 are very homogeneous in the Southern Hemisphere, with concentrations typically in the 1700–1750 ppbv range, except for higher concentrations in Africa and South America associated with anthropogenic sources, mainly from the agricultural sector, and natural emissions. In the Northern Hemisphere, variability is high over the continental regions. Over Canada and Alaska, for example, enhanced concentrations can be attributed principally to wetland emissions. Over North America, on the other hand, the dominant source of CH_4 emissions are of anthropogenic origin (agriculture,

Discussion Paper

Discussion Paper

Discussion Pape

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l∢ ⊳i

•

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Interactive Discussion

energy production, and waste treatment) and to a lesser extent, natural emissions from swamps, bogs, and tundra. The largest enchancements in surface concentration above the global mean are over India and South East Asia; emissions from these regions are of anthropogenic origin (agriculture, energy, waste treatment, and domestic sectors). Less variability is evident over the Northern Hemisphere oceans, away from continential emissions sources and where CH₄ can be well mixed. The global annual mean surface concentration from the StdTrop UKCA simulation is 1797 ppbv, within less than 3% of the globally and annually averaged observed concentration for the year 2000 of 1751 ppbv (Dlugokencky et al., 2003).

The multi-annual zonal annual mean distribution, shown in Fig. 13b, is characterized by high CH₄ concentrations near the surface in the Northern Hemisphere mid and high latitudes, with decreasing concentrations aloft. In the Southern Hemisphere, the entire troposphere is very well mixed with concentrations similar to surface concentrations (i.e. in the 1700–1750 ppby range). In the tropics, there is evidence of efficient upward transport from the surface to the upper troposphere due to convection as well as some indication of inter-hemispheric transport. There is a strong vertical gradient above the tropopause although it appears to be too strong in comparison to the zonal mean distribution from the MOZART model (Hauglustaine et al., 1998; Park et al., 2004) and from concentrations derived from Halogen Occultation Experiment (HALOE) satellite observations (Park et al., 2004). Results from a comparison between UKCA and SCIA-MACHY also support this (Hayman et al., 2013). This steep decline of CH₄ was also evident in the stratospheric configuration of UKCA (Morgenstern et al., 2009), particularly in the tropics, and was attributed to slow ascent in the tropical pipe. In the tropospheric configuration of UKCA, it could also be partly due to the entire stratospheric removal of CH₄ occurring at too low an altitude in comparison to interactive removal in a model with an extended top.

The total CH₄ burden, calculated as a multi-annual annual mean from the 10 yr of model integration, is found to be 4722 Tg CH₄, reasonably comparable to the total burden of 4850 Tg CH₄ for the year 1998 calculated by Prather et al. (2001). Of the total

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract

References Conclusions

Figures

Back

Interactive Discussion

model burden of 4722 Tg CH₄, 3984 Tg CH₄ of it resides below the diagnosed model tropopause with the remaining 738 Tg CH₄ aloft. The only source of atmospheric CH₄ in the model is from surface emissions (Table 11), totalling 526 Tg CH₄ yr⁻¹ for the year 2000. It is removed from the atmosphere by tropospheric oxidation by OH, which in the model accounts for 420 ± 3.4 Tg CH₄ yr⁻¹. The atmospheric lifetime associated with the tropospheric CH₄ burden and its loss by OH is 9.96 yr, which is in excellent agreement with the estimate of 9.6 yr from the Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (TAR) by Prather et al. (2001). It also agrees with a more recent intercomparison of chemistry models by Stevenson et al. (2006), in which the lifetime against OH loss was calculated to be 9.6 ± 0.4 yr. In UKCA, the stratospheric removal and soil sink account for approximately 68 and 50 Tg CH₄ yr⁻¹. These are larger than estimated by Prather et al. (2001) although there is significant inter-annual variability, particularly in the strength of the stratospheric loss (i.e. $\pm 10 \,\mathrm{Tg}\,\mathrm{CH}_4\,\mathrm{yr}^{-1}$).

A comparison between the modelled surface CH₄ concentrations from the StdTrop chemistry integration and observations from the Earth System Research Laboratory's Global Monitoring Division of the National Oceanic and Atmospheric Administration (http://www.esrl.noaa.gov/gmd/) can be seen in Fig. 14. The particular stations used were chosen on the basis of their long measurement records (for CH₄ in addition to O₃ and CO) although only observations from the 1999-2006 time period are used here. This is because CH₄ observations suggest that atmospheric levels were fairly constant during this period apart from a small increase in 2002 to 2003 (Dlugokencky et al., 2009). The comparison indicates that the StdTrop chemistry scheme in UKCA captures the seasonal cycle and absolute concentrations of surface CH₄ at most stations very well (e.g. Niwot Ridge, Bermuda). The most notable exception to this is at Barrow (71° N, 157° W), where modelled surface concentrations are overestimated by approximately 10 % during the Northern Hemisphere summer and autumn. A similar positive bias, albeit reduced, is also evident in the comparison at Mace Head. A study by Wang et al. (2004) found that the significant summer/autumn positive bias in a priori modelled surface concentrations from the GEOS-CHEM model simulation at Barrow was greatly

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Introduction **Abstract**

Title Page

Reference

Figures

Full Screen / Esc

GMDD

UKCA: The troposphere

F. M. O'Connor et al.

Printer-friendly Version

Interactive Discussion

reduced by their inversion and was specifically due to decreases in the animal, fossil fuel, waste, bogs, and tundra emission sources located in the Northern Hemisphere middle and high latitudes. More recent work by Hayman et al. (2013) also supports the hypothesis that the strength of the Fung et al. (1991) wetland emissions in the Northern Hemisphere (as used in this study) is too high.

Latitudinal profiles of surface concentrations of CH₄ from GLOBALVIEW-CH₄ (2009) and the UKCA simulation can be found in Fig. 15. It indicates a clear inter-hemispheric difference with maximum modelled concentrations in the northern mid-latitudes and minimum concentrations in the Southern Hemisphere. There is also some variability in the modelled concentrations in the Northern Hemisphere which is not evident in the observations. By contrast, UKCA and the observations are consistent in terms of variability in the Southern Hemisphere. Modelled concentrations of surface CH₄ are overestimated in the Northern Hemisphere by about 3% and underestimated in the Southern Hemisphere by approximately 1%, resulting in a modelled inter-hemispheric difference that is greater than that observed. These overestimates and underestimates can have implications for the accuracy of source estimates by inverse modelling (e.g. Houweling et al., 1999; Chen and Prinn, 2006) and may reflect the long inter-hemispheric transport timescale in UKCA relative to other models, as indicated in Sect. 3.6. However, the absolute concentrations of the model are reasonably comparable with the observations, given that the uncertainty in the strength of the global CH₄ source and sink is of the order of ± 15 % (Prather et al., 2001; Denman et al., 2007). These results clearly demonstrate the ability of the UKCA model to model CH₄ interactively and therefore, has the potential to become a very useful tool in the investigation of feedbacks involving CH_4 in the ES (e.g. O'Connor et al., 2010).

5.2 Carbon monoxide (CO)

Carbon monoxide (CO), together with CH_4 , is a primary sink for OH and CO is an important tropospheric O_3 precursor, thereby playing a significant role in tropospheric chemistry. The dominant source of CO to the atmosphere is at the surface from

incomplete combustion associated with both fossil fuel and biomass burning. However, CO is also produced by oxidation of CH₄ and NMVOCs. Multi-annual annual mean surface and zonal mean plots of CO from the StdTrop chemistry scheme can be seen in Fig. 16a and b. The surface plot shows a very pronounced hemispheric asymmetry, with maximum concentrations over the continental regions of the Northern Hemisphere and minimum concentrations over the Southern Hemisphere, particularly over the oceans and Antarctica. The highest concentrations are seen over south and east Asia (over 300 ppbv), Africa (over 300 ppbv), South America (over 300 ppbv), North America (over 200 ppbv), and Europe (over 200 ppbv). In South America and Africa, the dominant sources of CO are due to biomass burning and the BVOC surrogate emissions, with a smaller contribution from anthropogenic sources. Over North America, Europe, and south and east Asia, the high modelled surface concentrations are largely attributable to anthropogenic emissions, although there is also a contribution from the surrogate BVOC emissions over the south east United States and south east Asia. The spatial heterogeneity, even within the Northern Hemisphere, evident from the UKCA StdTrop surface distribution is also supported by other model studies (Hauglustaine et al., 2004). Minimum concentrations of less than 60 ppbv are evident over the oceanic regions of the Southern Hemisphere and are consistent with other models (e.g. Lawrence et al., 1999; Sudo et al., 2002).

The multi-annual zonal annual mean distribution in Fig. 16b indicates that maximum concentrations occur at the surface in the tropics and mid-latitudes of the Northern Hemisphere, with the maximum being more pronounced in the Northern Hemisphere winter than in the Northern Hemisphere summer. This seasonality in the maximum concentrations was also evident in other models (e.g. Müller and Brasseur, 1995; Hauglustaine et al., 1998) and is attributed to the seasonality of the efficiency of the CO + OH reaction. CO concentrations decrease above the surface in the Northern Hemisphere and the vertical gradient is stronger during the Northern Hemisphere winter than in summer. By contrast, the troposphere in the mid and high latitudes of the Southern Hemisphere is well mixed with typical concentrations of 50–60 ppbv in the annual

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

.

Abstract Introduction

Conclusions References

Tables Figures

I∢ ≯I

- →

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Paper

Discussion Paper

UKCA: The troposphere

F. M. O'Connor et al.

GMDD

6, 1743–1857, 2013

Title Page Introduction **Abstract** Conclusions References **Figures** Back Full Screen / Esc

Printer-friendly Version

Interactive Discussion

mean. At the tropopause, there is a strong vertical gradient, particularly in the Northern Hemisphere, with minimum concentrations (below 20 ppbv) above 18 and 10 km in the tropics and extra-tropics, respectively. This can be attributed to the relatively higher vertical resolution in HadGEM2 in comparison with other models (e.g. Lawrence et al., 1999). As was the case for CH₄, there is evidence of convective uplift, with a secondary maximum in the tropical upper troposphere. There is also a relative minimum in the CO concentration in the lower troposphere at 20° N. Both of these features are evident in other model simulations (e.g. Müller and Brasseur, 1995; Hauglustaine et al., 1998) and their existence is supported by aircraft observations taken during vertical profiles along meridional cross-sections from 70° N-60° S (Marenco et al., 1995).

Figure 17 shows a comparison between modelled surface CO concentrations from the StdTrop UKCA chemistry scheme with climatological observations from selected sites from NOAA's Earth Systems Research Laboratory's Global Monitoring Division (http://www.esrl.noaa.gov/gmd/). On the whole, the model captures both the seasonal cycle and the absolute surface concentrations reasonably well. At Barrow, however, the model fails to capture the enhanced surface concentrations observed during the Northern Hemisphere winter and spring. There is also some evidence of a similar winter-spring underestimate at other Northern Hemisphere surface sites (e.g. Mace Head, Bermuda). Using identical anthropogenic emissions, both the G-PUCCINI (Shindell et al., 2006) and the CAM-Chem (Lamarque et al., 2008; Gent et al., 2010) models in the recent Lamarque et al. (2010) study indicate a negative bias and a reduced seasonal cycle in modelled surface CO concentrations relative to observations at Mace Head and at most Northern Hemisphere stations, with a larger negative bias in winter. They hypothesised that biomass burning emissions from Russia in the latter part of the year may be too low to provide the wintertime Northern Hemisphere maximum but acknowledge that further investigations are necessary. Biases between UKCA-modelled surface CO concentrations and observations are much smaller in the Southern Hemisphere and this was also the case with the G-PUCCINI and CAM-Chem model simulations (Lamarque et al., 2010).

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Comparisons of vertical profiles of modelled and observed CO from various regions and aircraft campaigns can be found in Fig. 18. In particular, regional profiles are compared from 4 different aircraft campaigns. The Pacific Exploratory Mission in the Tropical Pacific (PEM-Tropics B) campaign took place during the wet season of the 5 southern tropics (March-April 1999) and was characterised by very clean air over the South Pacific with some influence from pollution over the tropical North Pacific (Raper et al., 2001). More specifically, measurements span the latitude and longitude range of 36° S-38° N and 148° W-76° E, respectively. The second aircraft campaign considered here, the Pacific Exploratory Mission West A (PEM West A) aircraft campaign, involved the NASA DC-8 aircraft, and took place in September-October 1991 over the northwestern Pacific, in which the lower tropospheric airflow was dominated by flow from mid-Pacific regions (Hoell et al., 1996). Emmons et al. (2000) split the PEM West A aircraft measurements into 5 regional profiles, namely, China Coast, Hawaii, Japan, Philippine Sea, and the western Tropical Pacific. The third set of aircraft campaign measurement data used here are from the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX) and Pollution From Aircraft Emissions in the North Atlantic Flight Corridor (POLINAT 2) campaigns which took place during September to November 1997 and provides full longitudinal coverage over the Atlantic between 30 and 60° N (Thompson et al., 2000). In particular, the regional profiles cover three regions: Ireland, East Atlantic, and Newfoundland. Finally, the comparisons include observations from the Transport and Atmospheric Chemistry near the Equator – Atlantic (TRACE A) field campaign (Fishman et al., 1996). TRACE-A took place over the tropical South Atlantic Ocean and the adjacent South American and African continents, with the specific objectives of investigating enhanced ozone concentrations over the tropical Atlantic Ocean and to quantify the role of ozone precursors associated with biomass burning in South America and southern Africa. It took place during September-October 1992 and was part of NASA's Global Tropospheric Experiment (GTE).

These aircraft measurements are not climatological in the sense that they represent long-term averages (Emmons et al., 2000). Instead, they provide snapshot distributions

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Introduction **Abstract**

Conclusions References

Figures

Interactive Discussion

of trace species in different regions, at different times of the year, and are influenced by different meteorological conditions and anthropogenic and natural emissions. Therefore, given the disparities in meteorology and emissions, the comparison at best is expected to be qualitative. Some profiles compare extremely well (e.g. west African coast from TRACE A and over the Philippine Sea during PEM-West A). Others indicate that the model is biased high (e.g. PEM-Tropics B) or low (e.g. SONEX). The high and low biases from UKCA StdTrop are not unique to this model or chemistry scheme. A comparison between an ensemble of 26 different chemistry models and CO observations from MOPITT (Shindell et al., 2006) finds that the range in modelled CO concentrations for the annual cycle of global mean CO at 500 hPa, for example, is as large as 40 ppbv. This suggests that the performance of UKCA relative to the regional CO profiles is reasonable, given the inconsistencies in meteorology and emissions.

Comparisons of the Troplsop chemistry scheme with global CO observations from the TES instrument on NASA's Aura satellite can be found in Voulgarakis et al. (2011b) and Telford et al. (2013). Surface CO comparisons of the UKCA TropIsop scheme against observations can be found in Archibald et al. (2011). Finally, an idealised CO tracer, initialised from MOPITT, was used by Hoyle et al. (2011) to evaluate tropical deep convection in UKCA and other models.

5.3 Nitrogen oxides (NO_x)

Nitrogen oxides, NO_x (= $NO + NO_2$), play a critical role in troposheric O_3 production and in determining the HO₂/OH ratio and CH₄ lifetime against OH in the troposphere. Figure 19 shows the modelled annual mean surface and zonal mean NO_x distributions from the multi-annual simulation of the UKCA StdTrop chemistry integration. Due to the conversion of NO_x to HNO₃ at the surface and in the lower troposphere on a timescale of 1 day, the surface plot indicates that enhanced concentrations of NO, are strongly confined to the continental source regions such as north eastern USA, Europe, and eastern Asia. These regions are associated with anthropogenic emissions. Secondary maxima are evident over continental regions such as South America, Africa,

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract**

References

Figures

Discussion Pape

6,

6, 1743–1857, 2013

GMDD

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I ◆ ▶I

◆ Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

and southern Asia, and are associated with biomass burning. The modelled global NO_v distribution is also clearly influenced by ship emissions, with the main routes across the northern and southern Atlantic Oceans, the north Pacific and the Indian Ocean. Away from the source regions, NO, concentrations are less than 10 pptv and are consistent with other modelling studies (e.g. Lawrence et al., 1999; Jöckel et al., 2006). However, maximum concentrations can be greater than 10 ppbv at the surface over the continental emission regions. These high concentrations are inconsistent with both observations (e.g. Horowitz et al., 1998) and other models (e.g. Hauglustaine et al., 2004), suggesting that the lifetime of surface NO_v in UKCA is too long due to the absence of heterogeneous chemistry (Dentener and Crutzen, 1993). Alternatively, it may be due to insufficient boundary layer mixing, as was the case at some locations with the ²²²Rn simulations in Sect. 3.3. Sensitivity tests in which NO_x emissions were added over a number of model layers reduce these maximum concentrations, bringing UKCA modelled concentrations more in line with those from other models. Emissions are also handled in this way in the regional air quality configuration of UKCA (Savage et al., 2012), which was found to be important for high-ozone episodes.

The zonal annual mean distribution of NO_{x} from the UKCA StdTrop multi-annual simulation can be seen in Fig. 19b. It indicates that NO_{x} concentrations vary by two orders of magnitude between the Northern Hemisphere boundary layer and the tropical troposphere and again, between the tropical troposphere and the stratosphere. Maximum concentrations in the annual mean are simulated in the Northern Hemisphere boundary layer between 20 and 60° N associated with anthropogenic emissions and in the stratosphere due to photolysis of HNO_3 . The latitudinal extent of the Northern Hemisphere boundary layer maximum varies with season and extends further poleward during the Northern Hemisphere winter. Similarly, in the annual mean, enhanced concentrations are evident in the Northern Hemisphere troposphere, the vertical extent of which varies with season and is dependent on NO_{x} lifetime. A secondary maximum is also evident in the tropical boundary layer associated with biomass burning. The vertical extent of the enhanced concentrations in the tropics is limited to approximately

Interactive Discussion

1–2 km depending on season, and reflects the efficient conversion of NO_x to HNO₃ in that region in all seasons as well as lightning emissions being too low. Nevertheless, the UKCA modelled zonal mean distribution is reasonably comparable to that of other models (e.g. Collins et al., 1997; Lawrence et al., 1999). One difference between the models is related to the latitudinal extent of the enhanced concentrations in the Northern Hemisphere. In both UKCA and the MATCH-MPIC (Lawrence et al., 1999) models. concentrations of 100 pptv only extend up to 70° N whereas in the STOCHEM (Collins et al., 1997) model, simulated concentrations poleward of 70° N are of the order of 1 ppbv during the Northern Hemisphere winter.

Comparisons of modelled NO_v concentrations with regional observations derived from a variety of aircraft campaigns (Emmons et al., 2000) can be found in Fig. 20. Given the short lifetime of NO_x, it does not provide the integrated view of regional emissions and transport that CO provides (Shindell et al., 2006). Nevertheless, it does give some indication of the NO_v emissions being used in the model. There is considerable variability in the observed concentrations in both time and space. However, in some locations (e.g. East Brazil Coast during TRACE A), the model captures the observed "C-shaped" profiles, with high concentrations in the polluted boundary layer, decreasing concentrations in the lowest troposphere, and enhanced concentrations aloft due to both lightning emissions and stratospheric input. In other locations, however, the model fails to capture the high concentrations in the mid and upper troposphere. Part of this bias may be related to lightning emissions being too low in the model (Young et al., 2012) although it may also be related to the emissions being added to the lowest model layer, insufficient boundary layer mixing and/or lack of convective uplift. The comparison shows that this aspect of the model performs satisfactorily but that ventilation of the boundary through mixing and/or convection may need improving.

Hydroxyl radical (OH)

The zonal and diurnal mean distribution of OH for January and July from the UKCA StdTrop chemistry integration can be found in Fig. 21. The latitudinal and seasonal

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract References Conclusions **Figures**

Printer-friendly Version

Interactive Discussion

variations in OH can be attributed to the distributions of ultraviolet (UV) radiation and water vapour which together provide the primary source of OH through the O(1D) + H₂O reaction (Levy, 1971). Concentrations are typically higher during the summer in the Northern Hemisphere, reflecting the role of O₃ and NO_x in enhancing OH production. Maximum OH concentrations are found in the boundary layer, as is the case in the ECHAM/MESSy1 model (Jöckel et al., 2006) and was attributed by them to a lack of liquid-phase OH chemistry, HO, uptake by aerosols, and secondary organic aerosol (SOA) formation in the boundary layer. In the StdTrop chemistry configuration of UKCA, there is also a lack of NMVOC chemistry, which is known to reduce OH in the boundary layer, particularly over forested continents (Houweling et al., 1998; Wang et al., 1998; Roelofs and Lelieveld, 2000). Minimum concentrations are modelled in the winter mid and high latitudes as well as in the summer UTLS.

The global annual mean OH concentration from the UKCA StdTrop simulation is $0.8 \pm 0.03 \times 10^6$ molecules cm⁻³ and $1.03 \pm 0.03 \times 10^6$ molecules cm⁻³ based on weighting factors of air mass and reaction rate with CH₄, respectively (Lawrence et al., 2001). In both cases, the standard deviation represents the variability in the global mean concentration using different vertical domains (i.e. region below modelled climatological tropopause, region below 100 hPa, region below 200 hPa, and region where O₃ is less than or equal to 100 ppbv), confirming the weak dependence of the global mean OH concentration on the choice of domain for these particular weightings (Lawrence et al., 2001). The air mass weighted OH concentration from the TropIsop chemistry scheme with the offline photolysis scheme is 0.78×10^6 molecules cm⁻³ (Telford et al., 2013), comparable to that from StdTrop. The air mass weighted OH concentration from StdTrop is, however, on the low side of the chemical models that participated in the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP; Lamarque et al., 2012), in which the multi-model mean concentration is $1.11 \pm 0.18 \times 10^6$ molecules cm⁻³ (Voulgarakis et al., 2012). However, lightning emissions of NO_x were inadvertently too low (Young et al., 2012), resulting in reduced efficiency of OH recycling in these model runs. As indicated in Sect. 5.1, the atmospheric

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract**

References

Figures

lifetime associated with the tropospheric CH_4 burden and its loss by OH, calculated following Lawrence et al. (2001) is 9.96 yr, which is in excellent agreement with the estimates from Prather et al. (2001), Stevenson et al. (2006) and the multi-model mean estimate from Voulgarakis et al. (2012). Note that Voulgarakis et al. (2012) quote the lifetime for the full atmosphere, rather than the tropospheric values used here.

Further comparisons of modelled OH from the UKCA TropIsop chemistry scheme against surface measurements from a south east Asian tropical forest can be found in Archibald et al. (2011).

5.5 Ozone (O₃)

In Fig. 22a and b, the UKCA modelled global distribution of surface O₃ concentrations for January and July are shown, respectively. In January, the UKCA model simulates maximum surface concentrations over central Africa (greater than 60 ppbv) and south Asia (50–60 ppbv) associated with O₃ precursor emissions from biomass burning and industrial sources, respectively. High surface concentrations are also simulated over the north Pacific (typically over 40 ppbv) and Atlantic (35-40 ppbv) Oceans, providing evidence for the longer O₃ lifetime and transport from the stratosphere during the Northern Hemisphere winter. The calculated stratospheric ozone contribution to the modelled surface O₃ abundance in UKCA is of the order of 40–50 % in these regions in January (not shown) and is similar to that calculated by Sudo et al. (2002). By contrast, concentrations are less than 20 ppbv over the US and the Eurasian continental regions. At the low HO_v concentrations found in the Northern Hemisphere winter, O₃ production is slow and in the boundary layer, O₃ is removed directly through titration by NO. In the Southern Hemisphere, higher surface concentrations are found over the continential regions (typically 20-30 ppbv) than over the remote oceans (less than 20 ppbv). In July, O₃ concentrations are generally much higher than in January, with maximum concentrations over southern Europe, the middle East, central Asia, and the continential US. High concentrations are also evident over western Africa associated with biomass burning and there is some evidence of outflow from the continental regions

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l∢ ⊳l

■ •

Back Close

Full Screen / Esc

Printer-friendly Version

Back

Interactive Discussion

to the oceanic regions. In the absence of biogenic NMVOC emissions, surface concentrations are underestimated over the eastern US, for example. However, the main features of the surface distribution, both in January and July, is consistent with other modelling studies (e.g. Hauglustaine et al., 2004; Zeng et al., 2008).

The multi-annual zonal mean O₃ distribution for January and July can be found in Fig. 23. It indicates that tropospheric ozone concentrations typically increase with height and are higher in the Northern Hemisphere than in the Southern Hemisphere in both seasons. Northern Hemisphere concentrations in the mid-troposphere are typically 40-60 ppbv whereas Southern Hemisphere concentrations are closer to 30-40 ppbv. Maximum concentrations are found in the upper troposphere of the Northern Hemisphere during July (greater than 60 ppbv) with minimum concentrations near the surface in the Southern Hemisphere in January. In the tropics, there is evidence of a secondary minimum in the mid- and upper troposphere due to advection and convective transport of ozone-poor air from the surface. The influence of the stratosphere on the tropospheric concentrations is also clearly evident in both hemispheres, due to transport of high-O₃ air across the sub-tropical jetstreams. In the Northern Hemisphere mid-troposphere (45° N, 5 km), stratospheric O₃ contributes 50–60 % to the modelled tropospheric O₃ distribution in January which reduces to 35–40% in July. In the Southern Hemisphere, on the other hand, stratospheric O₃ contributes 40–50 % and 50–60 % to the mid-troposphere modelled concentrations in January and July, respectively, and is similar to that of other models (e.g. Hauglustaine et al., 2004). A comparison of the zonal annual mean with the ACCENT (Atmospheric Composition Change: the European Network of excellence) multi-model ensemble by Stevenson et al. (2006) indicates that modelled O_3 from UKCA sits within ± 1 standard deviation of the ensemble mean in most regions and altitudes. The most notable exception is in the tropical midand upper troposphere, where the absence of an isoprene mechanism in StdTrop may account for some of the discrepancy (Pöschl et al., 2000; von Kuhlmann et al., 2004). However, the role of lightning emissions cannot be ruled out and is explored later in this section.

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract** Conclusions References **Figures**

Interactive Discussion

The chemistry scheme being evaluated here, due to its lack of NMVOC chemistry, is appropriate for the remote troposphere and is not expected to reproduce observed surface O₃ in regions influenced by NMVOC emissions from vegetation and industry. Therefore, a comparison between modelled and observed surface concentrations of O₃ (Fig. 24) is indicative only. The model, however, captures both the seasonal cycle and the absolute concentrations of surface O₃ at northern mid-latitudes (e.g. Mace Head, Bermuda, Niwot Ridge). The springtime maximum at the remote sites of Mace Head and Bermuda is represented very well along with the summertime maximum at the polluted site of Niwot Ridge. In the tropics, the seasonal cycle of the surface observations is reproduced well (Mauna Loa, Barbados, and Samoa) but the model overestimates concentrations by up to 10 ppbv. A similar disagreement in the tropics between modelled and observed surface concentrations was also evident in the LMDz-INCA model (Hauglustaine et al., 2004). The model performs less well at the northern high latitude site of Barrow. Although the summertime concentrations are captured reasonably well, the model fails to reproduce the autumn-winter maximum; modelled concentrations are underestimated by 50 %. The cause of the discrepancy is unclear but modelled surface ²¹⁰Pb concentrations at Barrow in Sect. 3.4 suggest that the model is representing the long-range boundary layer transport into the Arctic well. Other possibilities for the discrepancy could be biases in O₃-precursor emissions (as seen in CO in Sect. 5.2), lack of gas-phase and heterogeneous bromine chemistry (e.g. Yang et al., 2005), excessive titration of O₃ by NO, in addition to the difficulty that a coarse-grid model has in representing the uniqueness of the observational site at Barrow.

The radiative forcing efficiency on a per molecule basis is greatest for O₃ changes near the tropopause (Lacis et al., 1990), thus making upper levels more important than the surface for climate forcing by O₃. As a result, in Fig. 25, a comparison between UKCA and ozonesonde observations (Logan et al., 1999; Thompson et al., 2003a,b) is presented. Also included in the comparison is the ACCENT multi-model ensemble from Stevenson et al. (2006). UKCA performs exceptionally well in the northern extratropics at all pressure levels in capturing both the seasonal cycle and the absolute O₃

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Introduction **Abstract**

Conclusions References

Figures

Full Screen / Esc

Printer-friendly Version

UKCA: The troposphere

F. M. O'Connor et al.

GMDD

6, 1743–1857, 2013

Title Page Introduction

Abstract

References

Figures

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

concentrations. In particular, the ACCENT ensemble underestimates the amplitude of the seasonal cycle and overestimates Northern Hemisphere wintertime O₃ by approximately 10 ppbv (Stevenson et al., 2006) whereas UKCA reproduces both the amplitude of the seaonal cycle and the observed wintertime O₃ at 750 and 500 hPa very well. Similarly, the comparison of UKCA with observations at 850, 600, and 400 hPa in the northern extratropics is very good. The model, however, tends to underestimate the observed O₃ concentrations at 250 hPa with a slight overestimate at 100 hPa. This overestimate at 100 hPa is also evident in the tropics and results in a warming of the tropical tropopause and a moistening of the stratosphere when O₃ from UKCA is passed to the climate model's radiation scheme in place of a prescribed O₃ climatology (O'Connor et al., 2009). An underestimate of modelled O₃ from UKCA at 250 hPa in comparison with observations is also evident in the tropics and places UKCA at the lower end of the ACCENT multi-model ensemble. At 500 hPa, UKCA is again at the lower end of the model ensemble and is biased low in comparison with the observations in the 0-30°S latitude band. At the same pressure surface in the northern tropics, however, UKCA is in better agreement with the observations than the ensemble mean but the number of observational sites (4) covering this region is limited. In the southern extratropics, UKCA matches the observations very well at 850 and 750 hPa, with also a good agreement at 750 hPa with the ensemble mean. Aloft, UKCA performs well in comparison with both the observations and the multi-model ensemble but tends to underestimate O₃ during the Southern Hemisphere winter. The model intercomparison by Stevenson et al. (2006) indicated that the greatest variability in modelled O₃ is in the tropics as a result of model differences in the treatments of convection, lightning NO_v emissions, biogenic isoprene emissions and biomass burning emissions. Indeed, it was found that the low bias from UKCA relative to observations and the other AC-CENT models was due to the lightning NO_x emissions in the model being inadvertently lower (i.e. $< 2 \text{ TgN yr}^{-1}$) than the anticipated level of 5 Tg N yr^{-1} (Young et al., 2012). A sensitivity study in which the lightning emissions were increased results in a reduction in the UKCA tropical O₃ bias. Stevenson et al. (2006) also noted that the

Interactive Discussion

mid-latitudes are less affected by convection, lightning, biomass burning and biogenic emissions and the performance of UKCA is better in the extratropics than in the tropics. In terms of the overall performance of the model, a root-mean-square-error (RMSE) for UKCA was calculated using modelled and observed monthly mean O₃ concentrations at 750, 500, and 250 hPa and excluding the extratropics at 250 hPa; UKCA has a RMSE of 12.4 ppbv, well within the range in RMSE across the ACCENT models of 5.1-18.0 ppbv (Stevenson et al., 2006). For a comparison of the more recent ACCMIP multi-model ensemble, including UKCA StdTrop in HadGEM2, with the ACCENT models (Stevenson et al., 2006) and ozonesonde and satellite observations, the reader is referred to Young et al. (2012).

An additional comparison, making use of the Fortuin and Kelder (1998) O₃ climatology which is based on ozonesonde and satellite measurements made between 1980 and 1991, is shown in Fig. 26. This observational climatology was used to evaluate some of the models which participated in the ACCENT model intercomparison (Gauss et al., 2006). In the tropical troposphere (20° S-20° N, 0-12 km), they found that all models except one agreed with the observed O₃ climatology to within ± 40 %. This is also the case with UKCA, with maximum deviations occurring in the 8-12 km altitude range. The study by Gauss et al. (2006) also indicated that near-surface O₃ at 30° N in the ACCENT models was higher than the climatology and extended to other latitudes and higher altitudes to varying degrees. Modelled O₃ from UKCA also shows a positive anomaly in comparison with the Fortuin and Kelder (1998) climatology at the surface between 15 and 30° N which extends upwards to 3 km at 25° N. Thirdly, for the Northern Hemisphere extra-tropical troposphere (45–90° N, 0–8 km), O₃ was simulated to within \pm 30 % by two of the ACCENT models and to within \pm 10–20 % by the other models. UKCA appears to be in better agreement with the climatology in this region than in the tropics, with anomalies generally less than 20%. The most notable exceptions to this are negative anomalies in excess of 25 % near the surface between 45 and 75° N and in the upper troposphere/lower stratosphere. The former discrepany could be related to the lack of NMVOC chemistry in StdTrop whereas the latter discrepancy can be most

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract** References **Figures**

1785

Interactive Discussion

likely attributed to a mismatch in tropopause location between UKCA and the O₃ climatology. Gauss et al. (2006) argue that an agreement between modelled and observed O₃ concentrations of better than 20-40% cannot be expected due to the mismatch in meteorology between the observations and that used by the models, the time lag between the model simulations and the observations, and the lack of interannual variability in the models' prescribed emissions. From a UKCA perspective, although these caveats also apply, the key point to note is that the performance of UKCA relative to the climatology is quantitatively comparable to that for the other models.

Further comparisons of StdTrop and TropIsop relative to global O₃ observations from the TES instrument onboard NASA's Aura satellite can be found in Young et al. (2012), Voulgarakis et al. (2011b), and more recently, in Telford et al. (2013). Archibald et al. (2011) also compare O₃ from Troplsop with Stevenson et al. (2006) which looks broadly similar to the StdTrop comparison in Fig. 25 here.

Historical and future simulations

One of the main objectives of StdTrop was the ability to represent CH₄, tropospheric O₃, and oxidant fields for sulphate aerosol formation in a climate model for use in centennial climate projections. Given the performance of StdTrop relative to present-day observations, it was included in all the centennial simulations carried out with the Met Office Hadley Centre's climate model, HadGEM2-ES (Collins et al., 2011), for CMIP5 along with a few other climate modelling centres. For details on the historical and future O₃-precursor emissions used in the CMIP5 simulations, the reader is referred to Lamarque et al. (2010) and Lamarque et al. (2011); details on all the other HadGEM2-ES forcings can be found in Jones et al. (2011). Figure 27 shows the global mean surface CH₄ and O₃ concentrations, the tropospheric CH₄ lifetime against OH, and the tropospheric O₃ burden for the historical period and out to 2100 for each of the Representative Concentration Pathways (RCPs) - RCP2.6 (van Vuuren et al., 2011), RCP4.5 (Thomson et al., 2011), RCP6.0 (Masui et al., 2011), and RCP8.5 (Riahi et al., 2011).

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Introduction **Abstract**

Conclusions References

Figures

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

In the historical and future runs, global mean surface CH₄ concentrations were used to prescribe the surface CH₄ concentration in UKCA. The CH₄ abundance aloft, however, evolved interactively along with the other gas-phase constituents.

Figure 27b, in particular, shows how the tropospheric CH₄ lifetime against OH varies 5 over the historical and future periods relative to a pre-industrial control experiment. In the control, the CH₄ lifetime is of the order of 10.1 yr. There is also some evidence of interannual and multidecadal variability in the lifetime. In the historical simulation, the CH₄ lifetime remains similar to that in the pre-industrial control until about 1950. Thereafter, the lifetime increases, reaching a maximum value of 10.6 yr before decreasing until the year 2000. This can be attributed to the SSTs in the coupled model being biased cold in the tropical oceans, thereby affecting atmospheric temperatures and humidity. In RCP2.6, the lifetime continues to decrease, reaching a minimum value of 8.4 yr at 2050. Thereafter, the lifetime increases until 2100. Although Shindell et al. (2012) didn't include a historical study, their time evolution of CH₁ lifetime against OH from 2000-2100 is similar to that in this study. However, there are substantial differences in RCP8.5, for example. In the GISS model, Shindell et al. (2012) found that the lifetime was longer throughout the 21st century than at the year 2000 whereas in HadGEM2 with UKCA StdTrop, CH₄ lifetime reduces between 2000 and 2050, then increases before decreasing to a lifetime of 9.6 yr at 2100. Simulations of present-day and future OH and CH₄ lifetime from the ACCMIP multi-model ensemble are discussed further in Voulgarakis et al. (2012).

Tropospheric O₃ increased during the historical simulation, giving rise to an increase in the global mean surface concentration of almost 9 ppbv and in the tropospheric O₃ burden of 7.3 Dobson Units (DU) i.e. from $220 \pm 1.7 \,\mathrm{Tg}$ O₃ (20.5 ± 0.16 DU) in the 1860 s to $300 \pm 1.6 \text{ Tg O}_3$ (27.9 $\pm 0.15 \text{ DU}$) for the 2000s. This increase in tropospheric O₃ burden is similar in sign and magnitude to that from Cionni et al. (2011) and is at the lower end of the estimates from the ACCMIP models i.e. 98 ± 17 Tg O₃ (Young et al., 2012). This can be most likely attributed to the lack of NMVOCs in StdTrop (Young et al., 2012). The time evolution of the increase, however, shows a slow increase from

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract**

References

Figures

Back

1860 up to 1940, a more rapid increase between 1940 and 1980, followed by a slower increase between 1980 and the 2000s, reasonably consistent with that from Kawase et al. (2011). In the case of UKCA StdTrop, this increase in tropospheric O₃ burden gives rise to a global mean radiative forcing of 0.24 W m⁻² for the 2000s relative to the 1860s based on a global mean normalised radiative forcing of 0.033 W m⁻² DU⁻¹ by Gauss et al. (2006) and is consistent with that from Cionni et al. (2011). This estimate, however, does not take account that forcing by O₃ varies strongly with region (Shindell et al., 2003) and it is lower than previous estimates (cf. $0.32 \pm 0.07 \,\mathrm{Wm}^{-2}$ from Gauss et al., 2006). Cionni et al. (2011) argue that it is primarily the result of 1850-2000 changes in biomass burning emissions being smaller than in the models used by Gauss et al. (2006). However, more recently, Stevenson et al. (2012) calculated radiative forcing from all the ACCMIP models using a number of different radiative transfer models and different tropopause definitions. They calculated an estimate of 0.3 W m⁻² for UKCA StdTrop in HadGEM2, at the lower end of the ACCMIP ensemble mean $(0.36 \pm 0.06 \,\mathrm{W\,m^{-2}})$.

The simulations from year 2000 out to 2100 indicate that tropospheric O₃ burden projections vary with RCP. In RCP2.6, the O₃ burden continues to increase from 2000 until 2010, followed by a decrease until the end of the century. In RCP4.5, it reaches a maximum of 310 Tg O₃ around 2040, and then declines to 285 Tg O₃ at 2100. In RCP6.0, there is little change in the tropospheric O₃ burden until around 2050–2055, it then starts to decline, reaching a value of 283 Tg O₃ at 2100. In contrast, RCP8.5 sees a continual increase in tropospheric O₃ throughout the 21st century, reaching a maximum of 355 Tg O₃ at 2100, with CH₄ being the main driving factor. This time evolution is quite consistent with that from the CHASER CTM (Kawase et al., 2011), with reasonable agreement for the 2090s–2000s tropospheric O₃ changes i.e. –3.7 DU (RCP2.6), -1.2 DU (RCP4.5), -1.2 DU (RCP6.0), and +4.9 DU (RCP8.5). Cionni et al. (2011). likewise, calculated global annual mean tropospheric O₃ column changes of -5, -2, -2, and +5 DU between the 2090s and 2000s for RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. The corresponding radiative forcing estimates from Stevenson

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Introduction **Abstract**

Conclusions References

Figures

Printer-friendly Version

Interactive Discussion

et al. (2012) for StdTrop in HadGEM2 are -0.15, -0.03, and $+0.27 \,\mathrm{W}\,\mathrm{m}^{-2}$ for RCP2.6, RCP4.5, and RCP8.5. In particular, there is a clear consensus amongst the ACCMIP models on the sign and magnitude of the troposheric O₃ changes and the corresponding radiative forcing for each RCP.

Conclusions

This paper is Part 2 of a series of papers, which aim to describe and evaluate the new UK Chemistry and Aerosol (UKCA) model. In particular, in this part, we evaluate aspects of dynamical processes which are important for tropospheric composition. A number of simple tracer experiments were set up, including ²²²Rn, ⁸⁵Kr, and ²¹⁰Pb, to assess boundary layer mixing, convective transport, inter-hemispheric exchange, and wet scavenging. In relation to boundary layer mixing and convective transport, the performance of the UKCA model was comparable to that of other models. It showed excellent comparison with surface observations at some sites but poorer performance at other sites. It reproduced the vertical profile of ²²²Rn and ²¹⁰Pb well, suggesting that boundary layer mixing and convective transport are well represented in the base dynamical model. The ⁸⁵Kr simulation indicated that the timescale for inter-hemispheric exchange was long relative to other model estimates and could have implications for meridional gradients of long-lived tracers, such as CH₄. Wet scavenging was also evaluated by means of a ²¹⁰Pb tracer and results suggest that the UKCA model simulates the shape and absolute concentrations of observed profiles very well. Finally, global mass conservation was assessed and found to give a drift of less than 0.01 % per year.

The climate model, HadGEM2, can be run with two tropospheric chemistry schemes. The first scheme, called StdTrop, is a fairly simple chemistry scheme but includes O_x-NO_y-HO_x-CO chemistry with near-explicit treatment of methane, ethane, propane, and acetone degradation (including formaldehyde, acetaldehyde, peroxy acetyl nitrate. and peroxy propionyl nitrate). The second chemistry scheme, called TropIsop, is an extension to StdTrop to include the species and reactions from the Mainz Isoprene

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract** Reference

Figures

Printer-friendly Version

Interactive Discussion

Mechanism. Both chemistry schemes can be run with a choice of chemical solver (Backward Euler or Newton-Raphson), photolysis scheme (Offline Hough scheme, Fast-J and Fast-JX) and dry deposition (Prescribed deposition velocities or Resistance approach), all of which are described. Descriptions of wet scavenging, upper boundary 5 conditions, and emissions are also included.

The evaluation of the troposheric configuration of UKCA focussed on the performance of StdTrop, particularly because the StdTrop chemistry scheme was included in all centennial model simulations with the HadGEM2-ES Earth System Model (Collins et al., 2011) by the Met Office Hadley Centre for the fifth Coupled Model Intercomparison Project (CMIP5). It was also included in the multi-model ensemble of the recent Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). In summary, it was found that the StdTrop chemistry scheme performs well in comparison with other models in simulating global and zonal mean distributions of methane, ozone, carbon monoxide, nitrogen oxides, and hydroxyl radical. Surface comparisons of methane and carbon monoxide were particularly good but the model did less well in reproducing observed surface concentrations of ozone. This can be attributed to the lack of non-methane hydrocarbon chemistry included in the chemical scheme, making it unsuitable for air quality purposes. However, from a climate forcing perspective, the UKCA StdTrop chemistry scheme compares well with ozonesonde observations and other models in the mid- and upper-troposphere. The global annual mean hydroxyl concentration is $0.8 \pm 0.03 \times 10^6$ molecules cm⁻³, resulting in a tropospheric methane lifetime against hydroxyl of 9.96 yr, in line with other published estimates.

Further developments on the UKCA model are already underway and/or completed. In particular, the aerosol component of the UKCA model, GLOMAP-mode, has been coupled to the StdTrop and TropIsop chemistry schemes (with extensions for sulphur chemistry, for example) will be described and evaluated in Part 3 of the UKCA paper series (Mann et al., 2013). In addition, an extended tropospheric chemistry scheme, ExtTC, has also been implemented in UKCA with enhanced coupling between the atmosphere and the land surface; this will be discussed in Part 4 of the series (Folberth

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Introduction **Abstract**

Title Page

Conclusions References

Figures

Pape

Interactive Discussion

et al., 2013). Furthermore, the Troplsop chemistry scheme has been combined with the stratospheric chemistry (Morgenstern et al., 2009) and will be discussed in a forthcoming paper by Archibald et al. (2013). As with other chemistry models, UKCA is under continual development; these developments will continue to be published in future pa-5 pers.

Acknowledgements. The development of the UKCA model (www.ukca.ac.uk) and this work was supported by the Joint DECC/Defra Hadley Centre Climate Programme (GA01101) and the Natural Environment Research Council (NERC) through the National Centre for Atmospheric Science (NCAS) initiative. The authors would also like to thank all those who participated in the model intercomparison as part of the European Union project Atmospheric Composition Change: the European Network of excellence (ACCENT: http://www.accent-network.org), the results from which were used in Fig. 25.

References

- Allen, D., Rood, R., Thompson, A., and Hudson, R.: Three-dimensional radon 222 calculations using assimilated meteorological data and a convective mixing algorithm, J. Geophys. Res., 101, 6871–6881, 1996. 1753
- Andreae, M. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955-966, 2001. 1768
- Archibald, A. T., Jenkin, M., and Shallcross, D.: An isoprene mechanism intercomparison, Atmos. Environ., 44, 5356-5364, 2010. 1763
- Archibald, A. T., Levine, J. G., Abraham, N. L., Cooke, M. C., Edwards, P. M., Heard, D. E., Jenkin, M. E., Karunaharan, A., Pike, R. C., Monks, P. S., Shallcross, D. E., Telford, P. J., Whalley, L. K., and Pyle, J. A.: Impacts of HO_v regeneration and recycling in the oxidation of isoprene: consequences for the composition of past, present and future atmospheres, Geophys. Res. Lett., 38, doi:10.1029/2010GL046520, 2011, 1746, 1777, 1781, 1786
- Archibald, A. T., Abraham, N., Braesicke, P., Dalvi, M., Johnson, C., Keeble, J., O'Connor, F., Squire, O., Telford, P., and Pyle, J. A.: Evaluation of the UM-UKCA model configuration for Chemistry of the Stratosphere and Troposphere (CheST), Geosci. Model Dev. Discuss., in preparation, 2013, 1770, 1791

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Introduction Abstract

References Conclusions

Figures

Back

Full Screen / Esc

Paper

Printer-friendly Version

Interactive Discussion

Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., and Palmer, P. I.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)?, Atmos. Chem. Phys., 8, 4605-4620, doi:10.5194/acp-8-4605-2008, 2008.1763

Ashmore, M.: Assessing the future global impacts of ozone on vegetation, Plant Cell Environ., 28, 949-964, 2005, 1745

Atkinson, R., Baulch, D., Cox, R., Hampson, R., Kerr, J., Rossi, M., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VIII, halogen species - IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, J. Phys. Chem. Ref. Data, 29, 167–266, doi:10.1063/1.556058, 2000. 1819, 1823

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: IUPAC Subcommittee for Gas Kinetic Data Evaluation, http://www.iupac-kinetic.ch.cam.ac.uk/ (last access: November 2008), summary for 2003, 2003. 1819, 1823

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: IUPAC Subcommittee for Gas Kinetic Data Evaluation, http://www.iupac-kinetic.ch.cam.ac.uk/ (last access: November 2008), summary for 2004, 2004. 1819

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: IUPAC Subcommittee for Gas Kinetic Data Evaluation. http://www.iupac-kinetic.ch.cam.ac.uk/ (last access: November 2008), summary for 2005, 2005. 1819, 1826

Balkanski, Y., Jacob, D., Gardner, G., Graustein, W., and Turekian, K.: Transport and residence times of tropospheric aerosols inferred from a global 3-dimensional simulation of Pb-210, J. Geophys. Res., 98, 20573–20586, doi:10.1029/93JD02456, 1993. 1755, 1756, 1757

Barrie, L.: Background pollution in the arctic air-mass and its relevance to North-American acidrain studies, Water Air Soil Poll., 30, 765-777, 1986. 1755

Becker, K., Kleffmann, J., Kurtenbach, R., and Wiesen, P.: Solubility of nitrous acid (HONO) in sulfuric acid solutions, J. Phys. Chem., 100, 14984-14990, 1996. 1814

Bloss, C., Wagner, V., Jenkin, M. E., Volkamer, R., Bloss, W. J., Lee, J. D., Heard, D. E., Wirtz, K., Martin-Reviejo, M., Rea, G., Wenger, J. C., and Pilling, M. J.: Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons, Atmos. Chem. Phys., 5, 641-664, doi:10.5194/acp-5-641-2005, 2005. 1762, 1819

30

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Introduction Abstract

Conclusions References

Figures

Interactive Discussion

Broecker, W., Li, Y., and Cromwell, J.: Radium-226 and Radon-222: concentrations in Atlantic and Pacific Oceans, Science, 158, 1307-1310, 1967. 1751

Butchart, N., Scaife, A., Austin, J., Hare, S., and Knight, J.: Quasi-biennial oscillation in ozone in a coupled chemistry-climate model, J. Geophys. Res., 108, 4486, doi:10.1029/2002JD003004, 2003. 1745

Butler, T. M., Taraborrelli, D., Brühl, C., Fischer, H., Harder, H., Martinez, M., Williams, J., Lawrence, M. G., and Lelieveld, J.: Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign, Atmos. Chem. Phys., 8, 4529-4546, doi:10.5194/acp-8-4529-2008, 2008. 1763

Carver, G., Brown, P., and Wild, O.: The ASAD atmospheric chemistry integration package and chemical reaction database, Comput. Phys. Commun., 105, 197-215, 1997. 1764

Chen, Y.-H. and Prinn, R.: Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model, J. Geophys. Res., 111, D10307, doi:10.1029/2005JD006058, 2006, 1758, 1773

Chevillard, A., Ciais, P., Karstens, U., Heimann, M., Schmidt, M., Levin, I., Jacob, D., Podzun, R., Kazan, V., Sartorius, H., and Weingartner, E.: Transport of ²²²Rn using the regional model REMO: a detailed comparison with measurements over Europe, Tellus B, 54, 850-871, 2002. 1751

Cionni, I., Eyring, V., Lamarque, J.-F., Randel, W. J., Stevenson, D. S., Wu, F., Bodeker, G. E., Shepherd, T. G., Shindell, D. T., and Waugh, D. W.: Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing, Atmos. Chem. Phys., 11, 11267-11292, doi:10.5194/acp-11-11267-2011, 2011.1769, 1787, 1788

20

Collins, W., Stevenson, D., Johnson, C., and Derwent, R.: Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NO_x emission controls, J. Atmos. Chem, 26, 223-274, 1997. 1779

Collins, W., Derwent, R., Johnson, C., and Stevenson, D.: A comparison of two schemes for the convective transport of chemical species in a Lagrangian global chemistry model, Q. J. Roy. Meteor. Soc., 128, 991-1009, 2002. 1751, 1764

Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model - HadGEM2, Geosci. Model Dev., 4, 1051-1075, doi:10.5194/gmd-4-1051-2011, 2011, 1746, 1747, 1766, 1770, 1786, 1790

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Introduction Abstract

Conclusions References

Figures

Þ١

Conen, F. and Robertson, L.: Latitudinal distribution of radon-222 flux from continents, Tellus, 54, 127–133, doi:10.1034/j.1600-0889.2002.00365.x, 2002. 1753

Corbett, J. J. and Koehler, H. W.: Updated emissions from ocean shipping, J. Geophys. Res., 108, 4650, doi:10.1029/2003JD003751, 2003. 1767

5 CRC: CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, CRC Press, Boca Raton, FL, 84th Edn., 2003. 1814, 1815

Davies, T., Cullen, M., Malcolm, A., Mawson, M., Staniforth, A., White, A., and Wood, N.: A new dynamical core for the Met Office's global and regional modelling of the atmosphere, Q. J. Roy. Meteor. Soc., 131, 1759–1782, 2005. 1748

Denman, K., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P., Dickinson, R., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P., Wofsy, S., and Zhang, X.: Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Chap. Couplings between changes in the climate system and biogeochemistry, 499-587, Cambridge Univ. Press, Cambridge, 2007, 1773

Denning, A., Holzer, M., Gurney, K., Heimann, M., Law, R., Rayner, P., Fung, I., Fan, S.-M., Taguchi, S., Friedlingstein, P., Balkanski, Y., Taylor, J., Maiss, M., and Levin, I.: Threedimensional transport and concentration of SF₆. A model intercomparison study (TransCom 2), Tellus B, 51, 266–297, 1999. 1758, 1760

Dentener, F. and Crutzen, P.: Reaction of N₂O₅ on Tropospheric Aerosols: Impact on the Global Distributions of NO_x, O₃, and OH, J. Geophys. Res., 98, 149–7163, 1993. 1764, 1778

Dentener, F., Feichter, J., and Jeuken, A.: Simulation of the transsort of Rn²²² using on-line and off-line global models at different horizontal resolutions: a detailed comparison with measurements, Tellus B, 51, 573-602, 1999, 1752, 1753, 1754

Derwent, R. and Jenkin, M.: Hydrocarbons and the long-range transport of ozone and PAN across Europe, Atmos. Environ., 25, 1661-1678, 1991. 1762

Dibb, J., Talbot, R., Klemm, K., Gregory, G., Singh, H., Bradshaw, J., and Sandholm, S.: Asian influence over the western North Pacific during the fall season: inferences from lead 210, soluble ionic species and ozone, J. Geophys. Res., 101, 1779–1792, 1996. 1756

Dibb, J., Talbot, R., Lefer, B., Scheuer, E., Gregory, G., Browell, E., Bradshaw, J., Sandholm, S., and Singh, H.: Distributions of beryllium 7 and lead 210, and soluble aerosol-associated ionic species over the western Pacific: PEM West B, February-March 1994, J. Geophys. Res., 102, 28287–28302, 1997. 1756, 1839

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Introduction Abstract

Conclusions References

Figures

Back

Full Screen / Esc

Discussion Paper

Interactive Discussion

Dlugokencky, E., Houweling, S., Bruhwiler, L., Masarie, K., Lang, P., Miller, J., and Tans, P.: Atmospheric methane levels off: temporary pause or a new steady-state?, Geophys. Res. Lett., 30, 1992, doi:10.1029/2003GL018126, 2003. 1771

Dlugokencky, E., Bruhwiler, L., White, J., Emmons, L., Novelli, P., Montzka, S., Masarie, K., Lang, P., Crotwell, A., Miller, J., and Gatti, L.: Observational constraints on recent increases in the atmospheric CH₄ burden, Geophys. Res. Lett., 36, L18803, doi:10.1029/2009GL039780, 2009. 1772

Emmerson, K. M. and Evans, M. J.: Comparison of tropospheric gas-phase chemistry schemes for use within global models, Atmos. Chem. Phys., 9, 1831-1845, doi:10.5194/acp-9-1831-2009, 2009. 1763

Emmons, L., Hauglustaine, D., Muller, J., Carroll, M., Brasseur, G., Brunner, D., Staehelin, J., Thouret, V., and Marenco, A.: Data composites of airborne observations of tropospheric ozone and its precursors, J. Geophys. Res., 105, 20497-20538, 2000. 1776, 1779, 1848, 1850

Endresen, Ø., Sørgård, E., Sundet, J., Dalsøren, S., Isaksen, I., Berglen, T., and Gravir, G.: Emission from international sea transportation and environmental impact, J. Geophys. Res., 108, 4560, doi:10.1029/2002JD002898, 2003. 1767

Endresen, Ø., Sørgård, E., Behrens, H., Brett, P., and Isaksen, I.: A historical reconstruction of ships' fuel consumption and emissions, J. Geophys. Res., 112, D12301, doi:10.1029/2006JD007630, 2007. 1767

Evans, M. and Jacob, D.: Impact of new laboratory studies of N₂O₅ hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH, Geophys. Res. Lett., 32, L09813, doi:10.1029/2005GL022469, 2005. 1764

Eyring, V., Kohler, H., van Aardenne, J., and Lauer, A.: Emissions from international shipping: 1. The last 50 years, J. Geophys. Res., 110, doi:10.1029/2004JD005619, 2005. 1767

Eyring, V., Shepherd, T., and Waugh, D. E.: SPARC CCMVal: SPARC Report on the Evaluation of Chemistry-Climate Models, SPARC Report No. 5, WCRP-132, WMO/TD-No. 1526, http: //www.atmosp.physics.utoronto.ca/SPARC, 2010a. 1746, 1765

Eyring, V., Isaksen, I. S. A., Berntsen, T., Collins, W. J., Corbett, J. J., Endresen, O., Grainger, R. G., Moldanova, J., Schlager, H., and Stevenson, D. S.: Transport impacts on atmosphere and climate: shipping, Atmos. Environ., 44, 4735-4771, doi:10.1016/j.atmosenv.2009.04.059, 2010b. 1767

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract

Introduction

Conclusions References

Figures

Þ١

Full Screen / Esc

Interactive Discussion

Fishman, J., Hoell, J., Bendura, R., McNeil, R., and Kirchhoff, V.: NASA GTE TRACE A experiment (September October 1992): Overview, J. Geophys. Res., 101, 23865-23879, doi:10.1029/96JD00123, 1996. 1776

Folberth, G., Abraham, N., Dalvi, M., Johnson, C., Morgenstern, O., O'Connor, F., Pacifico, F., Young, P., Collins, W., and Pyle, J. A.: Evaluation of the new UKCA climate-composition model – Part 4: Extension to Tropospheric Chemistry and Biogeochemical Coupling between Atmosphere and Biosphere, Geosci. Model Dev. Discuss., in prep., 2013. 1746, 1764, 1768, 1790

Fortuin, J. and Kelder, H.: An ozone climatology based on ozonesonde and satellite measurements, J. Geophys. Res., 103, 31709-31734, 1998. 1785, 1856

Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L., and Fraser, P.: 3-Dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 13033-13065, 1991. 1767, 1773

Ganzeveld, L. and Lelieveld, J.: Dry deposition parameterization in a chemistry generalcirculation model and its influence on the distribution of reactive trace gases. J. Geophys. Res., 100, 20999-21012, doi:10.1029/95JD02266, 1995. 1748

Gauss, M., Myhre, G., Isaksen, I. S. A., Grewe, V., Pitari, G., Wild, O., Collins, W. J., Dentener, F. J., Ellingsen, K., Gohar, L. K., Hauglustaine, D. A., lachetti, D., Lamarque, F., Mancini, E., Mickley, L. J., Prather, M. J., Pyle, J. A., Sanderson, M. G., Shine, K. P., Stevenson, D. S., Sudo, K., Szopa, S., and Zeng, G.: Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere, Atmos. Chem. Phys., 6, 575-599, doi:10.5194/acp-6-575-2006, 2006, 1785, 1786, 1788

20

Gent, P. R., Yeager, S. G., Neale, R. B., Levis, S., and Bailey, D. A.: Improvements in a half degree atmosphere/land version of the CCSM, Clim. Dynam., 34, 819-833, 2010. 1775

25 Giannakopoulos, C.: Three dimensional modelling of the concentration and deposition of tropospheric trace gases, Ph.D. thesis, University of Cambridge, UK, 1998. 1748, 1750

Giannakopoulos, C., Chipperfield, T., Law, K., and Pyle, J.: Validation and intercomparison of wet and dry deposition schemes using Pb-210 in a global three-dimensional off-line chemical transport model, J. Geophys. Res., 104, 23761-23784, 1999. 1748, 1750

30 GLOBALVIEW-CH₄: Cooperative Atmospheric Data Integration Project – Methane, CD-ROM, NOAA ESRL, Boulder, Colorado, also available on Internet via anonymous FTP to ftp://ftp. cmdl.noaa.gov, Path: ccg/ch4/GLOBALVIEW, 2009. 1773, 1845

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract

References Conclusions

Figures

Þ١

Gordon, C., Cooper, C., Senior, C., Banks, H., Gregory, J., Johns, T., Mitchell, J., and Wood, R.: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments, Clim. Dynam., 16, 147–168, 2000. 1761

Gregory, D. and Rowntree, P.: A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure, Mon. Weather Rev., 118, 1483-1506, 1990, 1748

Guelle, W., Balkanski, Y., Dibb, J., Schulz, M., and Dulac, F.: Wet deposition in a global sizedependent aerosol transport model 2. Influence of the scavenging scheme on (210)Pb vertical profiles, surface concentrations, and deposition, J. Geophys. Res., 103, 28875–28891, 1998a, 1756, 1757

Guelle, W., Balkanski, Y., Schulz, M., Dulac, F., and Monfray, P.: Wet deposition in a global size-dependent aerosol transport model - 1. Comparison of a 1 year Pb-210 simulation with ground measurements, Clim. Dynam., 103, 11429-11445, 1998b. 1757

Guenther, A., Hewitt, C., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraiu, R., Taylor, J., and Zimmerman, P.: A global-model of natural volatile organic-compound emissions, J. Geophys. Res., 100, 8873-8892, doi:10.1029/94JD02950, 1995. 1767, 1768

Gupta, M., Douglass, A., Kawa, R., and Pawson, S.: Use of radon for evaluation of atmospheric transport models: sensitivity to emissions, Tellus B, 56, 404-412, doi:10.1111/j.1600-0889.2004.00124.x, 2004. 1753, 1754

Hanson, D., Burkholder, J., Howard, C., and Ravishankara, A.: Measurement of oh and ho2 radical uptake coefficients on water and sulfuric-acid surfaces, J. Phys. Chem., 96, 4979-4985, 1992, 1814

Hardiman, S. C., Butchart, N., Osprey, S. M., Gray, L. J., Bushell, A. C., and Hinton, T. J.: The Climatology of the Middle Atmosphere in a Vertically Extended Version of the Met Office's Climate Model. Part 1: Mean State, J. Atmos. Sci., 67, 1509-1525, doi:10.1175/2009JAS3337.1. 2010.

Hartley, D. and Black, R.: Mechanistic analysis of interhemispheric transport, Geophys. Res. Lett., 22, 2945-2948, doi:10.1029/95GL02823, 1995. 1760

Hauglustaine, D., Brasseur, G., Walters, S., Rasch, P., Muller, J., Emmons, L., and Carroll, C.: MOZART, a global chemical transport model for ozone and related chemical tracers 2. Model results and evaluation, J. Geophys. Res., 103, 28291-28335, 1998. 1771, 1774, 1775

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract

Conclusions References

Figures

Þ١

Back

Printer-friendly Version

Interactive Discussion

Hauglustaine, D., Hourdin, F., Jourdain, L., Filiberti, M., Walters, S., Lamarque, J., and Holland, E.: Interactive chemistry in the Laboratoire de Meteorologie Dynamique general circulation model: Description and background tropospheric chemistry evaluation, J. Geophys. Res., 109, 2004, 1751, 1752, 1753, 1757, 1759, 1774, 1778, 1782, 1783, 1833

5 Hayman, G., O'Connor, F., Dalvi, M., Clark, D., Huntingford, C., Gedney, N., Prigent, C., Buchwitz, M., Schneising, O., and Burrows, J.: First comparison of the HadGEM2 climate model with chemistry against SCIAMACHY atmospheric methane columns, Atmos. Chem. Phys. Discuss., in preparation, 2013. 1771, 1773

Hertel, O., Berkowicz, R., Christensen, J., and Hov, O.: Test of 2 numerical schemes for use in atmospheric transport-chemistry models, Atmos. Environ., 27, 2591-2611, 1993. 1764

Hoell, J., Davis, D., Liu, S., Newell, R., Shipham, M., Akimoto, H., McNeal, R., Bendura, R., and Drewry, J.: Pacific exploratory Mission-West A (PEM-West A): September October 1991, J. Geophys, Res., 101, 1641–1653, doi:10.1029/95JD00622, 1996, 1776

Hoerling, M., Schaack, T., and Lenzen, A.: A global analysis of stratospheric-tropospheric exchange during northern winter, Mon. Weather Rev., 121, 162–172, 1993, 1769, 1843, 1846. 1849, 1851, 1853

Horowitz, L., Liang, J., Gardner, G., and Jacob, D.: Export of reactive nitrogen from North America during summertime: Sensitivity to hydrocarbon chemistry, J. Geophys. Res., 103, 13451-13476, 1998, 1778

Hough, A.: The calculation of photolysis rates for use in global tropospheric modelling studies, Tech. Rep. 13259, At. Energy Res. Estab., Harwell, UK, 1988. 1765

Houweling, S., Dentener, F., and Lelieveld, J.: The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry, J. Geophys. Res., 103, 10673-10696, 1998. 1780

Houweling, S., Kaminski, T., Dentener, F., Lelieveld, J., and Heimann, M.: Inverse modeling of methane sources and sinks using the adjoint of a global transport model, J. Geophys. Res., 104, 26137–26160, 1999. 1758, 1773

Hoyle, C. R., Marécal, V., Russo, M. R., Allen, G., Arteta, J., Chemel, C., Chipperfield, M. P., D'Amato, F., Dessens, O., Feng, W., Hamilton, J. F., Harris, N. R. P., Hosking, J. S., Lewis, A. C., Morgenstern, O., Peter, T., Pyle, J. A., Reddmann, T., Richards, N. A. D., Telford, P. J., Tian, W., Viciani, S., Volz-Thomas, A., Wild, O., Yang, X., and Zeng, G.: Representation of tropical deep convection in atmospheric models - Part 2: Tracer transport, Atmos. Chem. Phys., 11, 8103-8131, doi:10.5194/acp-11-8103-2011, 2011.1754, 1777

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract

References Conclusions

Figures

Back

Full Screen / Esc

Printer-friendly Version

Jacob, D.: Heterogeneous chemistry and tropospheric ozone, Atmos. Environ., 34, 2131–2159, 2000. 1814

Jacob, D., Prather, M., Wofsy, S., and McElroy, M.: Atmospheric distribution of Kr-85 simulated with a general-circulation model, J. Geophys. Res., 92, 6614-6626, 1987. 1758, 1759, 1760

5 Jacob, D., Prather, M., Rasch, P., Shia, R., Balkanski, Y., Beagley, S., Bergmann, D., Blackshear, W., Brown, M., Chiba, M., Chipperfield, M., deGrandpre, J., Dignon, J., Feichter, J., Genthon, C., Grose, W., Kasibhatla, P., Kohler, I., Kritz, M., Law, K., Penner, J., Ramonet, M., Reeves, C., Rotman, D., Stockwell, D., VanVelthoven, P., Verver, G., Wild, O., Yang, H., and Zimmermann, P.: Evaluation and intercomparison of global atmospheric transport models using Rn-222 and other short-lived tracers, J. Geophys. Res., 102, 5953-5970, 1997. 1748, 1751, 1752, 1754

Jenkin, M., Saunders, S., Derwent, R., and Pilling, M.: Construction and application of a master chemical mechanism (MCM) for modelling tropospheric chemistry., Abstr. Pap. Am. Chem. S., 214, 116-COLL, 1997. 1762, 1763

Jenkin, M. E., Saunders, S. M., Wagner, V., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part B): tropospheric degradation of aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 181-193, doi:10.5194/acp-3-181-2003, 2003.1762, 1763

Jöckel, P., Tost, H., Pozzer, A., Brühl, C., Buchholz, J., Ganzeveld, L., Hoor, P., Kerkweg, A., Lawrence, M. G., Sander, R., Steil, B., Stiller, G., Tanarhte, M., Taraborrelli, D., van Aardenne, J., and Lelieveld, J.: The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere, Atmos. Chem. Phys., 6, 5067–5104, doi:10.5194/acp-6-5067-2006, 2006. 1778, 1780

20

Johns, T., Durman, C., Banks, H., Roberts, M., McLaren, A., Ridley, J., Senior, C., Williams, K., Jones, A., Rickard, G., Cusack, S., Ingram, W., Crucifix, M., Sexton, D., Joshi, M., Dong, B., Spencer, H., Hill, R., Gregory, J., Keen, A., Pardaens, A., Lowe, J., Bodas-Salcedo, A., Stark, S., and Searl, Y.: The new Hadley Centre Climate Model (HadGEM1): Evaluation of coupled simulations, J. Climate, 19, 1327-1353, doi:10.1175/JCLI3712.1, 2006, 1747

Johnson, C., Collins, W., Stevenson, D., and Derwent, R.: Relative roles of climate and emissions changes on future tropospheric oxidant concentrations, J. Geophys. Res., 104, 18631-18645, 1999, 1764

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract

Conclusions References

Figures

Þ١

Back

Interactive Discussion

Johnson, C., Stevenson, D., Collins, W., and Derwent, R.: Role of climate feedback on methane and ozone studied with a coupled ocean-atmosphere-chemistry model., Geophys. Res. Lett., 28, 1723–1726, 2001, 1745

Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., Liddicoat, S., O'Connor, F. M., Andres, R. J., Bell, C., Boo, K.-O., Bozzo, A., Butchart, N., Cadule, P., Corbin, K. D., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., Gray, L., Halloran, P. R., Hurtt, G., Ingram, W. J., Lamarque, J.-F., Law, R. M., Meinshausen, M., Osprey, S., Palin, E. J., Parsons Chini, L., Raddatz, T., Sanderson, M. G., Sellar, A. A., Schurer, A., Valdes, P., Wood, N., Woodward, S., Yoshioka, M., and Zerroukat, M.: The HadGEM2-ES implementation of CMIP5 centennial simulations, Geosci. Model Dev., 4, 543-570. doi:10.5194/amd-4-543-2011. 2011. 1766. 1770. 1786

Josse, B., Simon, P., and Peuch, V.: Radon global simulations with the multiscale chemistry and transport model MOCAGE, Tellus B, 56, 339-356, 2004. 1753

Kawase, H., Nagashima, T., Sudo, K., and Nozawa, T.: Future changes in tropospheric ozone under Representative Concentration Pathways (RCPs), Geophys. Res. Lett., 38. doi:10.1029/2010GL046402, 2011. 1788

Kritz, M., Rosner, S., and Stockwell, D.: Validation of an off-line three-dimensional chemical transport model using observed radon profiles - 1. Observations, J. Geophys. Res., 103, 8425-8432, 1998, 1753, 1834

Lacis, A., Wuebbles, D., and Logan, J.: Radiative forcing of climate by changes in the verticaldistribution of ozone, J. Geophys. Res., 95, 9971-9981, 1990. 1783

Lamarque, J.-F., Kinnison, D. E., Hess, P. G., and Vitt, F. M.: Simulated lower stratospheric trends between 1970 and 2005: Identifying the role of climate and composition changes, J. Geophys. Res., 113, 2008. 1775

Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017-7039, doi:10.5194/acp-10-7017-2010, 2010.1766, 1767, 1768, 1775, 1786

Lamarque, J.-F., Kyle, G. P., Meinshausen, M., Riahi, K., Smith, S. J., van Vuuren, D. P., Conley, A. J., and Vitt, F.: Global and regional evolution of short-lived radiatively-active gases and 6, 1743–1857, 2013

UKCA: The troposphere

GMDD

F. M. O'Connor et al.

Introduction Abstract

Title Page

References Conclusions

Figures

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract

Conclusions References

Figures

Þ١

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

2011. 1786 Lamarque, J.-F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I., Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Doherty, R., Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J., Horowitz, L. W., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Naik, V., Plummer, D., Righi, M., Rumbold, S. T., Schulz, M., Skeie, R. B., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., Voulgarakis, A., and Zeng, G.: The Atmospheric Chemistry and Climate Model

aerosols in the Representative Concentration Pathways, Climatic Change, 109, 191–212,

Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics, Geosci. Model Dev., 6, 179-206, doi:10.5194/gmd-6-179-2013, 2013.

1746, 1780

20

Lamb, B., Gay, D., Westberg, H., and Pierce, T.: A biogenic hydrocarbon emission inventory for the usa using a simple forest canopy model, Atmos. Environ., 27, 1673-1690, 1993. 1762

Law, K, and Pyle, J.: Modeling trace gas budgets in the troposphere .1. ozone and odd nitrogen. J. Geophys. Res., 98, 18377-18400, 1993. 1765

Law, K., Plantevin, P., Shallcross, D., Rogers, H., Pyle, J., Grouhel, C., Thouret, V., and Marenco, A.: Evaluation of modeled O-3 using Measurement of Ozone by Airbus In-Service Aircraft (MOZAIC) data, J. Geophys. Res., 103, 25721-25737, doi:10.1029/98JD01482, 1998. 1762

Lawrence, M., Crutzen, P., Rasch, P., Eaton, B., and Mahowald, N.: A model for studies of tropospheric photochemistry: description, global distributions, and evaluation, J. Geophys. Res., 104, 26245-26277, doi:10.1029/1999JD900425, 1999. 1774, 1775, 1778, 1779

Lawrence, M. G., Jöckel, P., and von Kuhlmann, R.: What does the global mean OH concentration tell us?, Atmos. Chem. Phys., 1, 37-49, doi:10.5194/acp-1-37-2001, 2001, 1780, 1781

Law, R. and Corbin, K.: Simulating the atmospheric transport of CO₂ and SF₆ using the UK Met Office Unified Model, Tech. Rep. 2, Centre for Australian Westher and Climate Research (CAWCR), 2009. 1761

Lelieveld, J. and Crutzen, P.: The role of clouds in tropospheric photochemistry, J. Atmos. Chem., 12, 229-267, 1991. 1814

Lelieveld, J., Butler, T. M., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder, H., Lawrence, M. G., Martinez, M., Taraborrelli, D., and Williams, J.: Atmospheric oxidation capacity sustained by a tropical forest, Nature, 452, 737-740, 2008. 1763

Pape

Interactive Discussion

- Levin, I. and Hesshaimer, V.: Refining of atmospheric transport model entries by the globally observed passive tracer distributions of (85)krypton and sulfur hexafluoride (SF6), J. Geophys. Res., 101, 16745–16755, 1996, 1758
- Levy, H., I.: Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science, 173, 141-143, 1971, 1780
- Lin, X., Zaucker, F., Hsie, E., Trainer, M., and McKeen, S.: Radon 222 simulations as a test of a three-dimensional regional transport model, J. Geophys. Res., 101, 29165–29177, 1996. 1751
- Lintner, B., Gilliland, A., and Fung, I.: Mechanisms of convection-induced modulation of passive tracer interhemispheric transport interannual variability, J. Geophys. Res., 109, D13102, doi:10.1029/2003JD004306. 2004. 1760
- Lock, A., Brown, A., Bush, M., Martin, G., and Smith, R.: A new boundary layer mixing scheme. Part 1: Scheme description and single-column model tests, Mon. Weather Rev., 128, 3187-3199, 2000, 1748
- Logan, J., Megretskaia, I., Miller, A., Tiao, G., Choi, D., Zhang, L., Stolarski, R., Labow, G., Hollandsworth, S., Bodeker, G., Claude, H., De Muer, D., Kerr, J., Tarasick, D., Oltmans, S., Johnson, B., Schmidlin, F., Staehelin, J., Viatte, P., and Uchino, O.: Trends in the vertical distribution of ozone: A comparison of two analyses of ozonesonde data, J. Geophys. Res., 104, 26373-26399, doi:10.1029/1999JD900300, 1999, 1783, 1855
- Macintyre, H. L. and Evans, M. J.: Sensitivity of a global model to the uptake of N_2O_5 by tropospheric aerosol, Atmos. Chem. Phys., 10, 7409-7414, doi:10.5194/acp-10-7409-2010, 2010.1764
 - Macintyre, H. L. and Evans, M. J.: Parameterisation and impact of aerosol uptake of HO₂ on a global tropospheric model, Atmos. Chem. Phys., 11, 10965-10974, doi:10.5194/acp-11-10965-2011, 2011.1764
 - Madronich, S., McKenzie, R., Bjorn, L., and Caldwell, M.: Changes in biologically active ultraviolet radiation reaching the Earth's surface, J. Photoch. Photobio. B, 46, 5-19, 1998. 1745
 - Mann, G., Johnson, C., Bellouin, N., Dalvi, M., Abraham, L., Carslaw, K. S., Boucher, O., Stier, P., Rae, J., Spracklen, D. V., Telford, P., Pyle, J., O'Connor, F., Carver, G., Pringle, K. J., and Woodhouse, M. T.: Evaluation of the new UKCA climate-composition model - Part 3: Aerosols, Geosci. Model Develop. Discuss., in preparation, 2013. 1746, 1763, 1790
 - Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: a modal

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract

Conclusions References

Figures

Þ١

Back

Printer-friendly Version

Interactive Discussion

global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model Dev., 3, 519-551, doi:10.5194/gmd-3-519-2010, 2010.1763

Mao, J., Jacob, D. J., Evans, M. J., Olson, J. R., Ren, X., Brune, W. H., Clair, J. M. St., Crounse, J. D., Spencer, K. M., Beaver, M. R., Wennberg, P. O., Cubison, M. J., Jimenez, J. L., Fried, A., Weibring, P., Walega, J. G., Hall, S. R., Weinheimer, A. J., Cohen, R. C., Chen, G., Crawford, J. H., McNaughton, C., Clarke, A. D., Jaeglé, L., Fisher, J. A., Yantosca, R. M., Le Sager, P., and Carouge, C.: Chemistry of hydrogen oxide radicals (HO_v) in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823-5838, doi:10.5194/acp-10-5823-2010, 2010.1764

Marenco, A., Jonquières, I., Gouget, H., and Nédélec, P.: Atmospheric Ozone as a Climate Gas, chap. Experimental determinations of meridional distribution and long term evolution of tropospheric ozone - Consequences on radiative forcing, 305-319, Springer-Verlag, New York, USA, 1995, 1775

Martin, G., Ringer, M., Pope, V., Jones, A., Dearden, C., and Hinton, T.: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology, J. Climate, 19, 1274–1301, 2006. 1747, 1748, 1756, 1761

15

Martin, G. M., Milton, S. F., Senior, C. A., Brooks, M. E., Ineson, S., Reichler, T., and Kim, J.: Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate, J. Climate, 23, 5933-5957, 2010. 1756

Masui, T., Matsumoto, K., Hijioka, Y., Kinoshita, T., Nozawa, T., Ishiwatari, S., Kato, E., Shukla, P. R., Yamagata, Y., and Kainuma, M.: An emission pathway for stabilization at 6 W m⁻² radiative forcing, Climatic Change, 109, 59-76, 2011. 1786

Morgenstern, O., Braesicke, P., Hurwitz, M. M., O'Connor, F. M., Bushell, A. C., Johnson, C. E., and Pyle, J. A.: The world avoided by the Montreal Protocol, Geophys. Res. Lett., 35, L16811, doi:10.1029/2008GL034590, 2008. 1746

Morgenstern, O., Braesicke, P., O'Connor, F. M., Bushell, A. C., Johnson, C. E., Osprey, S. M., and Pyle, J. A.: Evaluation of the new UKCA climate-composition model - Part 1: The stratosphere, Geosci. Model Dev., 2, 43-57, doi:10.5194/gmd-2-43-2009, 2009. 1746, 1764, 1770, 1771, 1791

Müller, J. and Brasseur, G.: IMAGES – A 3-dimensional chemical-transport model of the global troposphere, J. Geophys. Res., 100, 16445-16490, 1995. 1774, 1775

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract

Conclusions References

Figures

Pape

Murphy, D. M. and Fahey, D. W.: An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere, J. Geophys. Res., 99, 5325-5332, 1994. 1769

Neu, J. L., Prather, M. J., and Penner, J. E.: Global atmospheric chemistry: integrating over fractional cloud cover, J. Geophys. Res., 112, D11306, doi:10.1029/2006JD008007, 2007. 1766

O'Connor, F. M., Johnson, C. E., Morgenstern, O., and Collins, W. J.: Interactions between tropospheric chemistry and climate model temperature and humidity biases, Geophys. Res. Lett., 36, L16801, doi:10.1029/2009GL039152, 2009. 1746, 1764, 1784

O'Connor, F. M., Boucher, O., Gedney, N., Jones, C. D., Folberth, G. A., Coppell, R., Friedlingstein, P., Collins, W. J., Chappellaz, J., Ridley, J., and Johnson, C. E.: Possible role of wetlands, permafrost, and methane hydrates in the methane cycle under future climate change: A review, Rev. Geophys., 48, RG4005, doi:10.1029/2010RG000326, 2010. 1773

O'Sullivan, D., Lee, M., Noone, B., and Heikes, B.; Henry's law constant determinations for hydrogen peroxide, methyl hydroperoxide, hydroxymethyl hydroperoxide, ethyl hydroperoxide, and peroxyacetic acid, J. Phys. Chem., 100, 3241-3247, 1996. 1814

Park, M., Randel, W., Kinnison, D., Garcia, R., and Choi, W.: Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: satellite observations and model simulations, J. Geophys. Res., 109, D03302, doi:10.1029/2003JD003706, 2004. 1771

Penner, J., Atherton, C., Dignon, J., Ghan, S., Walton, J., and Hameed, S.: Tropospheric nitrogen – a 3-dimensional study of sources, distributions, and deposition, J. Geophys. Res., 96, 959-990, doi:10.1029/90JD02228, 1991. 1750, 1755

20

Pfister, G. G., Emmons, L. K., Hess, P. G., Lamarque, J. F., Orlando, J. J., Walters, S., Guenther, A., Palmer, P. I., and Lawrence, P. J.: Contribution of isoprene to chemical budgets: a model tracer study with the NCAR CTM MOZART-4, J. Geophys. Res., 113, D05308, doi:10.1029/2007JD008948, 2008, 1767

Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P.: Development and intercomparison of condensed isoprene oxidation mechanisms for global atmospheric modeling, J. Atmos. Chem., 37, 29-52, doi:10.1023/A:1006391009798, 2000. 1762, 1763, 1782, 1826, 1827

Prather, M., McElroy, M., Wofsy, S., Russell, G., and Rind, D.: Chemistry of the global troposphere - fluorocarbons as tracers of air motion, J. Geophys. Res., 92, 6579-6613, 1987. 1758, 1759, 1760

Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., and Wang, M.: Climate Change 2001: The **GMDD**

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract

Conclusions References

Figures

Back

Full Screen / Esc

Back

Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Chap. Atmospheric Chemistry and Greenhouse Gases, 239-287, Cambridge Univ. Press, Cambridge, 2001. 1771, 1772, 1773, 1781

Preiss, N. and Genthon, C.: Use of a new database of lead 210 for global aerosol model validation, J. Geophys. Res., 102, 25347-25357, 1997. 1755, 1837

Preiss, N., Melieres, M., and Pourchet, M.: A compilation of data on lead 210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces, J. Geophys. Res., 101, 28847–28862, 1996, 1756

Price, C. and Rind, D.: A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res., 97, 9919-9933, 1992. 1768

Price, C. and Rind, D.: What determines the cloud-to-ground lightning fraction in thunderstorms, Geophys. Res. Lett., 20, 463-466, 1993, 1768

Price, C. and Rind, D.: Modeling global lightning distributions in a general-circulation model, Mon. Weather Rev., 122, 1930-1939, 1994. 1768

Price, C., Penner, J., and Prather, M.: NO_x from lightning. 2. Constraints from the global atmospheric electric circuit, J. Geophys. Res., 102, 5943-5951, doi:10.1029/96JD02551, 1997. 1769

Priestley, A.: A quasi-conservative version of the semi-Lagrangian advection scheme, Mon. Weather Rev., 121, 621–629, doi:10.1175/1520-0493(1993)121<0621:AQCVOT>2.0.CO;2, 1993. 1748

20

Raper, J., Kleb, M., Jacob, D., Davis, D., Newell, R., Fuelberg, H., Bendura, R., Hoell, J., and McNeal, R.: Pacific Exploratory Mission in the tropical Pacific: PEM-Tropics B, March-April 1999, J. Geophys. Res., 106, 32401-32425, doi:10.1029/2000JD900833, 2001. 1776

Rasch, P., Feichter, J., Law, K., Mahowald, N., Penner, J., Benkovitz, C., Genthon, C., Giannakopoulos, C., Kasibhatla, P., Koch, D., Levy, H., Maki, T., Prather, M., Roberts, D., Roelofs, G., Stevenson, D., Stockwell, Z., Taguchi, S., Kritz, M., Chipperfield, M., Baldocchi, D., McMurry, P., Barrie, L., Balkansi, Y., Chatfield, R., Kjellstrom, E., Lawrence, M., Lee, H., Lelieveld, J., Noone, K., Seinfeld, J., Stenchikov, G., Schwartz, S., Walcek, C., and Williamson, D.: A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995, Tellus B, 52, 1025-1056, 2000. 1748, 1751, 1755

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction Abstract

Conclusions References

Figures

Þ١

Printer-friendly Version

Back

Interactive Discussion

Ravishankara, A., Dunlea, E., Blitz, M., Dillon, T., Heard, D., Pilling, M., Strekowski, R., Nicovich, J., and Wine, P.: Redetermination of the rate coefficient for the reaction of O(D-1) with N-2, Geophys. Res. Lett., 29, 1745, doi:10.1029/2002GL014850, 2002.

Regimbal, J. and Mozurkewich, M.: Peroxynitric acid decay mechanisms and kinetics at low pH, J. Phys. Chem. A, 101, 8822-8829, 1997. 1762, 1819

Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., and Rafaj, P.: RCP 8.5-A scenario of comparatively high greenhouse gas emissions, Climatic Change, 109, 33-57, 2011. 1814

Rind, D. and Lerner, J.: Use of on-line tracers as a diagnostic tool in general circulation model development, 1, Horizontal and vertical transport in the troposphere, J. Geophys, Res., 101, 12667-12683. doi:10.1029/96JD00551. 1996. 1786

Robertson, L., Stevenson, D., and Conen, F.: Test of a northwards-decreasing Rn-222 source term by comparison of modelled and observed atmospheric Rn-222 concentrations. Tellus B. 57, 116-123, 2005, 1748, 1751, 1758, 1760

Roelofs, G. and Lelieveld, J.: Tropospheric ozone simulation with a chemistry-general circulation model: Influence of higher hydrocarbon chemistry, J. Geophys. Res., 105, 22697–22712, doi:10.1029/2000JD900316, 2000. 1753

Russo, M. R., Marécal, V., Hoyle, C. R., Arteta, J., Chemel, C., Chipperfield, M. P., Dessens, O., Feng, W., Hosking, J. S., Telford, P. J., Wild, O., Yang, X., and Pyle, J. A.: Representation of tropical deep convection in atmospheric models - Part 1: Meteorology and comparison with satellite observations, Atmos. Chem. Phys., 11, 2765–2786, doi:10.5194/acp-11-2765-2011, 2011.1780

1754

20

Sander, R. and Crutzen, P.: Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, J. Geophys. Res., 101, 9121-9138, doi:10.1029/95JD03793. 1996. 1748

Sanderson, M., Jones, C., Collins, W., Johnson, C., and Derwent, R.: Effect of climate change on isoprene emissions and surface ozone levels, Geophys. Res. Lett., 30, doi:10.1029/2003GL017642, 2003, 1745

30 Sanderson, M., Collins, W., Johnson, C., and Derwent, R.: Present and future acid deposition to ecosystems: the effect of climate change, Atmos. Environ., 40, 1275-1283, 2006. 1750

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Abstract

Introduction

Conclusions References

Figures

Þ١

Full Screen / Esc

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I₫

▶

Full Screen / Esc

Back

Printer-friendly Version

Interactive Discussion

Sanderson, M. G., Collins, W. J., Hemming, D. L., and Betts, R. A.: Stomatal conductance changes due to increasing carbon dioxide levels: projected impact on surface ozone levels, Tellus B, 59, 404–411, 2007. 1750, 1831

Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: World Wide Web site of a Master Chemical Mechanism (MCM) for use in tropospheric chemistry models, Atmos. Environ., 31, 1249, doi:10.1016/S1352-2310(97)85197-7, 1997. 1762, 1763

Saunders, S. M., Jenkin, M. E., Derwent, R. G., and Pilling, M. J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds, Atmos. Chem. Phys., 3, 161–180, doi:10.5194/acp-3-161-2003, 2003. 1762, 1763, 1826

Savage, N. H., Law, K. S., Pyle, J. A., Richter, A., Nüß, H., and Burrows, J. P.: Using GOME NO₂ satellite data to examine regional differences in TOMCAT model performance, Atmos. Chem. Phys., 4, 1895–1912, doi:10.5194/acp-4-1895-2004, 2004.1762

Savage, N. H., Agnew, P., Davis, L. S., Ordóñez, C., Thorpe, R., Johnson, C. E., O'Connor, F. M., and Dalvi, M.: Air quality modelling using the Met Office Unified Model: model description and initial evaluation, Geosci. Model Dev. Discuss., 5, 3131–3182, doi:10.5194/gmdd-5-3131-2012, 2012. 1764, 1766, 1778

Seinfeld, J. and Pandis, S.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, Hoboken, New Jersey, USA, 2nd edn., 2006. 1745, 1749

Shindell, D. T., Faluvegi, G., and Bell, N.: Preindustrial-to-present-day radiative forcing by tropospheric ozone from improved simulations with the GISS chemistry-climate GCM, Atmos. Chem. Phys., 3, 1675–1702, doi:10.5194/acp-3-1675-2003, 2003. 1788

Shindell, D. T., Faluvegi, G., and Bell, N.: Preindustrial-to-present-day radiative forcing by tropospheric ozone from improved simulations with the GISS chemistry-climate GCM, Atmos. Chem. Phys., 3, 1675–1702, doi:10.5194/acp-3-1675-2003, 2003.1775, 1777, 1779

Shindell, D. T., Faluvegi, G., Koch, D. M., Schmidt, G. A., Unger, N., and Bauer, S. E.: Improved attribution of climate forcing to emissions, Science, 326, 716–718, doi:10.1126/science.1174760, 2009. 1764

Shindell, D. T., Pechony, O., Voulgarakis, A., Faluvegi, G., Nazarenko, L., Lamarque, J.-F., Bowman, K., Milly, G., Kovari, B., Ruedy, R., and Schmidt, G.: Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations, Atmos. Chem. Phys. Discuss., 12, 23513–23602, doi:10.5194/acpd-12-23513-2012, 2012. 1787

Interactive Discussion

Sitch, S., Cox, P. M., Collins, W. J., and Huntingford, C.: Indirect radiative forcing of climate change through ozone effects on the land-carbon sink, Nature, 448, 791-794, doi:10.1038/nature06059, 2007. 1745

Smith, R., Fowler, D., Sutton, M., Flechard, C., and Coyle, M.: Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs, Atmos. Environ., 34, 3757–3777, 2000. 1749

Sorteberg, A. and Hov, O.: Two parametrizations of the dry deposition exchange for SO2 and NH3 in a numerical model, Atmos. Environ., 30, 1823-1840, 1996. 1748, 1755

Staudinger, J. and Roberts, P.: A critical compilation of Henry's law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561-576, 2001. 1814, 1815

Stevenson, D., Collins, W., Johnson, C., and Derwent, R.: Intercomparison and evaluation of atmospheric transport in a Lagrangian model (STOCHEM), and an Eulerian model (UM), using Rn-222 as a short-lived tracer, Q. J. Roy. Meteor. Soc., 124, 2477-2491, 1998. 1751

Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije, T. P. C., Wild, O., Zeng, G., Amann, M., Atherton, C. S., Bell, N., Bergmann, D. J., Bey, I., Butler, T., Cofala, J., Collins, W. J., Derwent, R. G., Doherty, R. M., Drevet, J., Eskes, H. J., Fiore, A. M., Gauss, M., Hauglustaine, D. A., Horowitz, L. W., Isaksen, I. S. A., Krol, M. C., Lamarque, J. F., Lawrence, M. G., Montanaro, V., Muller, J. F., Pitari, G., Prather, M. J., Pyle, J. A., Rast, S., Rodriguez, J. M., Sanderson, M. G., Savage, N. H., Shindell, D. T., Strahan, S. E., Sudo, K., and Szopa, S.: Multimodel ensemble simulations of present-day and near-future tropospheric ozone, J. Geophys. Res., 111, D08301, doi:10.1029/2005JD006338, 2006. 1772, 1781, 1782, 1783, 1784, 1785, 1786

20

Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J.-F., Shindell, D. T., Voulgarakis, A., Skeie, R. B., Dalsoren, S. B., Myhre, G., Berntsen, T. K., Folberth, G. A., Rumbold, S. T., Collins, W. J., MacKenzie, I. A., Doherty, R. M., Zeng, G., van Noije, T. P. C., Strunk, A., Bergmann, D., Cameron-Smith, P., Plummer, D. A., Strode, S. A., Horowitz, L., Lee, Y. H., Szopa, S., Sudo, K., Nagashima, T., Josse, B., Cionni, I., Righi, M., Eyring, V., Conley, A., Bowman, K. W., and Wild, O.: Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP), Atmos. Chem. Phys. Discuss., 12, 26047–26097, doi:10.5194/acpd-12-26047-2012, 2012. 1788

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Introduction Abstract

Title Page

References Conclusions

Figures

Þ١

Pape

Stockwell, D., Kritz, M., Chipperfield, M., and Pyle, J.: Validation of an off-line three-dimensional chemical transport model using observed radon profiles – 2. Model results, J. Geophys. Res., 103, 8433–8445, 1998, 1752, 1754

Sudo, K., Takahashi, M., and Akimoto, H.: CHASER: a global chemical model of the troposphere – 2. Model results and evaluation, J. Geophys. Res., 107, 4339, doi:10.1029/2001JD001114, 2002. 1774, 1781

Telford, P. J., Lathière, J., Abraham, N. L., Archibald, A. T., Braesicke, P., Johnson, C. E., Morgenstern, O., O'Connor, F. M., Pike, R. C., Wild, O., Young, P. J., Beerling, D. J., Hewitt, C. N., and Pyle, J.: Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo, Atmos. Chem. Phys., 10, 7117-7125, doi:10.5194/acp-10-7117-2010, 2010, 1746

Telford, P. J., Abraham, N. L., Archibald, A. T., Braesicke, P., Dalvi, M., Morgenstern, O., O'Connor, F. M., Richards, N. A. D., and Pyle, J. A.: Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3). Geosci. Model Dev., 6, 161-177, doi:10.5194/gmd-6-161-2013, 2013. 1766, 1770, 1777, 1780, 1786

15

20

The HadGEM2 Development Team: Martin, G. M., Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2 family of Met Office Unified Model climate configurations, Geosci. Model Dev., 4, 723-757, doi:10.5194/gmd-4-723-2011, 2011. 1747

Thompson, A., Singh, H., and Schlager, H.: Introduction to special section: Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX) and Pollution from Aircraft Emissions in the North Atlantic Flight Corridor (POLINAT 2), J. Geophys. Res., 105, 3595-3603, doi:10.1029/2000JD900012, 2000, 1776

Thompson, A., Witte, J., McPeters, R., Oltmans, S., Schmidlin, F., Logan, J., Fujiwara, M., Kirchhoff, V., Posny, F., Coetzee, G., Hoegger, B., Kawakami, S., Ogawa, T., John**GMDD**

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Introduction Abstract

Title Page

Conclusions References

Figures

Þ١

Back

Printer-friendly Version

son, B., Vomel, H., and Labow, G.: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology – 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements, J. Geophys. Res., 108, 8238, doi:10.1029/2001JD000967, 2003a. 1783, 1855

Thompson, A., Witte, J., Oltmans, S., Schmidlin, F., Logan, J., Fujiwara, M., Kirchhoff, V., Posny, F., Coetzee, G., Hoegger, B., Kawakami, S., Ogawa, T., Fortuin, J., and Kelder, H.: Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology – 2. Tropospheric variability and the zonal wave-one, J. Geophys. Res., 108, 8241, doi:10.1029/2002JD002241, 2003b. 1783, 1855

Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., and Edmonds, J. A.: RCP4.5: a pathway for stabilization of radiative forcing by 2100, Climatic Change, 109, 77–94, 2011. 1786

Turekian, K., Nozaki, Y., and Benninger, L.: Geochemistry of atmospheric radon and radon products, Annu. Rev. Earth Pl. Sc., 5, 227–255, 1977. 1751

Tyndall, G., Cox, R., Granier, C., Lesclaux, R., Moortgat, G., Pilling, M., Ravishankara, A., and Wallington, T.: Atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res., 106, 12157–12182, doi:10.1029/2000JD900746, 2001. 1762, 1819

van Aardenne, J., Dentener, F., Olivier, J., and Peters, J.: The EDGAR 3.2 Fast Track 2000 dataset (32FT2000), http://themasites.pbl.nl/tridion/en/themasites/edgar/emission_data/edgar_32ft2000/index-2.html, 2005. 1766

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6, 3423–3441, doi:10.5194/acp-6-3423-2006, 2006.1766

van Vuuren, D. P., Stehfest, E., den Elzen, M. G. J., Kram, T., van Vliet, J., Deetman, S., Isaac, M., Goldewijk, K. K., Hof, A., Beltran, A. M., Oostenrijk, R., and van Ruijven, B.: RCP2.6: exploring the possibility to keep global mean temperature increase below 2 degrees C, Climatic Change, 109, 95–116, 2011. 1786

Vestreng, V., Rigler, E., Adams, M., Kindbom, K., Pacyna, J. M., van der Gon, H. D., Reis, S. and Travnikov, O.: EMEP: Inventory Review 2006: Emission data reported to the LRTAP Convention and NEC Directive, Stage 1, 2 and 3 review, Evaluation of inventories of HMs and POPs, EMEP MSC-W, Oslo, Norway, 2006. 1766

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Abstract Introduction

Title Page

Conclusions References

Tables Figures

I∢ ≯I

- ◆

Back

Printer-friendly Version

Full Screen / Esc

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

- Title Page

 Abstract Introduction
- Conclusions References
 - Tables Figures
 - I◀
- **→**
- Full Screen / Esc

Back

- Printer-friendly Version
- Interactive Discussion
 - © BY

- von Kuhlmann, R., Lawrence, M., Crutzen, P., and Rasch, P.: A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model description and ozone results, J. Geophys. Res., 108, 4294, doi:10.1029/2002JD002893, 2003. 1768
- von Kuhlmann, R., Lawrence, M. G., Pöschl, U., and Crutzen, P. J.: Sensitivities in global scale modeling of isoprene, Atmos. Chem. Phys., 4, 1–17, doi:10.5194/acp-4-1-2004, 2004.1763, 1782
- Voulgarakis, A., Savage, N. H., Wild, O., Braesicke, P., Young, P. J., Carver, G. D., and Pyle, J. A.: Interannual variability of tropospheric composition: the influence of changes in emissions, meteorology and clouds, Atmos. Chem. Phys., 10, 2491–2506, doi:10.5194/acp-10-2491-2010, 2010.1763
- Voulgarakis, A., Telford, P. J., Aghedo, A. M., Braesicke, P., Faluvegi, G., Abraham, N. L., Bowman, K. W., Pyle, J. A., and Shindell, D. T.: Global multi-year O₃-CO correlation patterns from models and TES satellite observations, Atmos. Chem. Phys., 11, 5819–5838, doi:10.5194/acp-11-5819-2011, 2011a.1763
- Voulgarakis, A., Telford, P. J., Aghedo, A. M., Braesicke, P., Faluvegi, G., Abraham, N. L., Bowman, K. W., Pyle, J. A., and Shindell, D. T.: Global multi-year O3-CO correlation patterns from models and TES satellite observations, Atmos. Chem. Phys., 11, 5819–5838, doi:10.5194/acp-11-5819-2011, 2011b. 1770, 1777, 1786
- Voulgarakis, A., Naik, V., Lamarque, J.-F., Shindell, D. T., Young, P. J., Prather, M. J., Wild, O., Field, R. D., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Folberth, G. A., Horowitz, L. W., Josse, B., McKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Stevenson, D. S., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Analysis of present day and future OH and methane lifetime in the ACCMIP simulations, Atmos. Chem. Phys. Discuss., 12, 22945–23005, doi:10.5194/acpd-12-22945-2012, 2012. 1780, 1781, 1787

20

- Walton, J., MacCracken, M., and Ghan, S.: A global-scale lagrangian trace species model of transport, transformation, and removal processes, J. Geophys. Res., 93, 8339–8354, doi:10.1029/JD093iD07p08339, 1988. 1750, 1757
- Wang, C., Corbett, J., and Firestone, J.: Improving spatial representation of global ship emissions inventories, Environ. Sci. Tech., 42, 193–199, doi:10.1021/es0700799, 2008. 1767
- Wang, J., Logan, J., McElroy, M., Duncan, B., Megretskaia, I., and Yantosca, R.: A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997, Global Biogeochem. Cy., 18, doi:10.1029/2003GB002180, 2004. 1772

Interactive Discussion

Wang, K.-Y. and Shallcross, D. E.: A modelling study of tropospheric distributions of the trace gases CFCI₃ and CH₃CCI₃ in the 1980s, Ann. Geophys., 18, 972–986, doi:10.1007/s00585-000-0972-3, 2000.1759

Wang, Y. H., Jacob, D. J., and Logan, J. A.: Global simulation of tropospheric O₃-NO_xhydrocarbon chemistry 3. Origin of tropospheric ozone and effects of nonmethane hydrocarbons, J. Geophys. Res., 103, 10757–10767, doi:10.1029/98JD00156, 1998. 1762, 1780

Waugh, D. W., Oman, L., Kawa, S. R., Stolarski, R. S., Pawson, S., Douglass, A. R., Newman, P. A., and Nielsen, J. E.: Impacts of climate change on stratospheric ozone recovery, Geophys. Res. Lett., 36, 3857-3860, doi:10.1029/2008GL036223, 2009. 1745

Weiss, W., Sittkus, A., Stockburger, H., Sartorius, H., and Munnich, K.: Large-scale atmospheric mixing derived from meridional profiles of KR-85, J. Geophys. Res., 88, 8574-8578, doi:10.1029/JC088iC13p08574, 1983. 1758, 1840

Wesely, M.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical-models, Atmos, Environ., 23, 1293-1304, 1989, 1749

WHO: Health Aspects of Air Pollution with Particulate Matter, Ozone, and Nitrogen Dioxide. Report of a WHO Working Group EUR/03/5042688, World Health Organization European Centre for Environment and Health, Bonn, Germany, 2003. 1745

Wild, O. and Prather, M.: Excitation of the primary tropospheric chemical mode in a global threedimensional model, J. Geophys. Res., 105, 24647-24660, doi:10.1029/2000JD900399, 2000. 1764

Wild, O., Zhu, X., and Prather, M.: Fast-j: Accurate simulation of in- and below-cloud photolysis in tropospheric chemical models, J. Atmos. Chem., 37, 245-282, 2000. 1765

WMO: Scientific Assessment of Ozone Depletion: 2010, World Meteorological Organization, Geneva, Switzerland, global Ozone Research and Monitoring Project - Report No. 52, 516 pp., 2011. 1746

Yang, X., Cox, R. A., Warwick, N. J., Pyle, J. A., Carver, G. D., O'Connor, F. M., and Savage, N. H.: Tropospheric bromine chemistry and its impacts on ozone: a model study, J. Geophys. Res., 110, D23311, doi:10.1029/2005JD006244, 2005. 1783

Yienger, J. and Levy, H.: Empirical-model of global soil-biogenic NO, emissions, J. Geophys. Res., 100, 11447-11464, doi:10.1029/95JD00370, 1995. 1768

Young, P. J., Arneth, A., Schurgers, G., Zeng, G., and Pyle, J. A.: The CO₂ inhibition of terrestrial isoprene emission significantly affects future ozone projections, Atmos. Chem. Phys., 9, 2793–2803, doi:10.5194/acp-9-2793-2009, 2009.1763

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Introduction Abstract

Conclusions References

Figures

Þ١

- Young, P. J., Archibald, A. T., Bowman, K. W., Lamarque, J.-F., Naik, V., Stevenson, D. S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Horowitz, L. W., Josse, B., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Skeie, R. B., Shindell, D. T., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys. Discuss., 12, 21615–21677, doi:10.5194/acpd-12-21615-2012, 2012. 1769, 1779, 1780, 1784, 1785, 1786, 1787
- Zaucker, F., Daum, P., Wetterauer, U., Berkowitz, C., Kromer, B., and Broecker, W.: Atmospheric Rn-222 measurements during the 1993 NARE intensive, J. Geophys. Res., 101, 29149–29164, doi:10.1029/96JD02029, 1996. 1754, 1834
- Zeng, G. and Pyle, J. A.: Changes in tropospheric ozone between 2000 and 2100 modeled in a chemistry-climate model, Geophys. Res. Lett., 30, 1392m doi:10.1029/2002GL016708, 2003. 1762
- Zeng, G. and Pyle, J. A.: Influence of El Nino Southern Oscillation on stratosphere/troposphere exchange and the global tropospheric ozone budget, Geophys. Res. Lett., 32, L01814, doi:10.1029/2004GL021353, 2005. 1762
 - Zeng, G., Pyle, J. A., and Young, P. J.: Impact of climate change on tropospheric ozone and its global budgets, Atmos. Chem. Phys., 8, 369–387, doi:10.5194/acp-8-369-2008, 2008.1763, 1782

20

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l∢ ⊳l

▶

Back Close

Full Screen / Esc

Printer-friendly Version

Table 1. Values required to calculate the effective Henry's Law co-efficient for the soluble species included in the UKCA standard tropospheric (StdTrop) scheme, where $Me = CH_3$, $Et = C_2H_5$, and $Pr = C_3H_7$. References: 1. Jacob (2000); 2. Regimbal and Mozurkewich (1997); 3. CRC (2003); 4. Lelieveld and Crutzen (1991); 5. Hanson et al. (1992); 6. O'Sullivan et al. (1996); 7. Staudinger and Roberts (2001); and 8. Becker et al. (1996).

Species	Henry's La K _H (298K)	aw Data -Δ <i>H/R</i>	Dissociati K _a (298 K)	on Data -Δ <i>H/R</i>	Reference
NO ₃	2.0E+00	2000.0	0.0E+00	0.0	1
$N_2\tilde{O}_5$	2.1E+05	8700.0	2.0E+01	0.0	As for HONO ₂
HO_2NO_2	1.3E+04	6900.0	1.0E-05	0.0	2; 3
HONO ₂	2.1E+05	8700.0	2.0E+01	0.0	4
HO ₂	4.0E+03	5900.0	2.0E-05	0.0	5; 1
$H_2\bar{O}_2$	8.3E+04	7400.0	2.4E-12	-3730.0	6
HCHO	3.3E+03	6500.0	0.0E+00	0.0	7
MeOO	2.0E+03	6600.0	0.0E+00	0.0	4
MeOOH	3.1E+02	5000.0	0.0E+00	0.0	7
HONO	5.0E+01	4900.0	5.6E-04	-1260.0	8
EtOOH	3.4E+02	5700.0	0.0E+00	0.0	7
<i>n</i> -PrOOH	3.4E+02	5700.0	0.0E+00	0.0	As for EtOOH
<i>i-</i> PrOOH	3.4E+02	5700.0	0.0E+00	0.0	As for EtOOH
MeCOCH ₂ OOH	3.4E+02	5700.0	0.0E+00	0.0	As for EtOOH

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

I**⊲**

►I

•

>

Back

Close

Full Screen / Esc

Printer-friendly Version

Table 2. Values required to calculate the effective Henry's Law co-efficient for the additional soluble species included in the UKCA standard tropospheric scheme with isoprene oxidation (Troplsop), where $Me = CH_3$, $IS = C_5H_7$, ISON = Lumped peroxy alkyl nitrates (fromC₅H₈ + NO₃) and hydroxy alkyl nitrates (from ISO₂ + NO), MACR = Lumped species consisting of methacrolein, methyl vinyl ketone and other C4 carbonyls from isoprene oxidation, HACET = hydroxyacetone and other C3 ketones, MGLY = methylglyoxal and other C3 carbonyls, NALD = nitrooxy acetaldehyde, and Prpe = C_3H_5 . References: 1. Staudinger and Roberts (2001); and 2. CRC (2003).

Species	Henry's Law Data		Dissociation Data		Reference	
Species	$K_{\rm H}(298{\rm K})$	$-\Delta H/R$	$K_{\rm a}$ (298 K)	$-\Delta H/R$	helerence	
ISOOH	1.7E+06	9700.0	0.0E+00	0.0	As for PrpeOOH from 1	
ISON	3.0E+03	7400.0	0.0E+00	0.0	1	
MACROOH	1.7E+06	9700.0	0.0E+00	0.0	As for PrpeOOH from 1	
HACET	1.4E+02	7200.0	0.0E+00	0.0	1	
MGLY	3.5E+03	7200.0	0.0E+00	0.0	1	
HCOOH	6.9E+03	5600.0	1.8E-04	-1510.0	1; 2	
MeCO ₃ H	7.5E+02	5300.0	6.3E-09	0.0	1	
MeCO ₂ H	4.7E+03	6000.0	1.8E-05	0.0	1; 2	

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

I₫

Þ١

Back

Full Screen / Esc

Printer-friendly Version

Discussion Paper

Discussion Paper

ere Discussion Paper

Table 3. Tracers/species in the UKCA standard tropospheric (StdTrop) scheme, where $Me = CH_3$, $Et = C_2H_5$, $Pr = C_3H_7$, PAN = peroxy acetyl nitrate, and PPAN = peroxy propionyl nitrate.

Treatment

Transported Tracer

Transported Tracer

Transported Tracer

Transported Tracer

Species Name

 N_2O_5

 H_2O_2

HO₂NO₂

HONO₂

Species mame	rreatment
H ₂ O	Constant Field
CO_2	Constant Tracer
H_2	Constant Tracer
$\overline{N_2}$	Constant Tracer
O_2	Constant Tracer
O(3P)	Steady State
O(1D)	Steady State
OH	Steady State
HO ₂	Steady State
MeOO	Steady State
EtOO	Steady State
MeCO ₃	Steady State
<i>n</i> -PrOO	Steady State
i-PrOO	Steady State
EtCO3	Steady State
MeCOCH ₂ OO	Steady State
O_3	Transported Tracer
NO	Transported Tracer
NO_3	Transported Tracer
NO_2	Transported Tracer

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l∢ ⊳l

→ -

Back Close

Full Screen / Esc

Printer-friendly Version

Treatment
Transported Tracer

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

References Conclusions

> Tables Figures

I₫ Þ١

Back Close

Full Screen / Esc

Table 4. Photolytic reactions in the UKCA standard tropospheric (StdTrop) scheme, where $Me = CH_3$, $Et = C_2H_5$, $Pr = C_3H_7$, PAN = peroxy acetyl nitrate, and PPAN = peroxy propionyl nitrate.

Label	Reaction
1	EtOOH + hv → MeCHO + HO ₂ + OH
2	$H_2O_2 + hv \rightarrow OH + OH$
3	$HCHO + hv \rightarrow HO_2 + HO_2 + CO$
4	$HCHO + hv \rightarrow H_2 + CO$
5	$HO_2NO_2 + h\nu \rightarrow HO_2 + NO_2$
6	$HONO_2 + hv \rightarrow OH + NO_2$
7	$MeCHO + hv \rightarrow MeOO + HO_2 + CO$
8	$MeCHO + hv \rightarrow CH_4 + CO$
9	MeOOH + $hv \rightarrow HO_2$ + HCHO + OH
10	$N_2O_5 + hv \rightarrow NO_3 + NO_2$
11	$NO_2 + hv \rightarrow NO + O(3P)$
12	$NO_3 + hv \rightarrow NO + O_2$
13	$NO_3 + hv \rightarrow NO_2 + O(3P)$
14	$O_2 + h\nu \rightarrow O(3P) + O(3P)$
15	$O_3 + h\nu \rightarrow O_2 + O(1D)$
16	$O_3 + hv \rightarrow O_2 + O(3P)$
17	$PAN + hv \rightarrow MeCO_3 + NO_2$
18	$HONO + hv \rightarrow OH + NO$
19	EtCHO + $hv \rightarrow$ EtOO + HO ₂ + CO
20	$Me_2CO + hv \rightarrow MeCO_3 + MeOO$
21	n -PrOOH + $hv \rightarrow \text{EtCHO} + \text{HO}_2 + \text{OH}$
22	i -PrOOH + $h\nu \rightarrow \text{Me}_2\text{CO} + \text{HO}_2 + \text{OH}$
23	$MeCOCH_2OOH + hv \rightarrow MeCO_3 + HCHO + OH$
24	$PPAN + hv \rightarrow EtCO_3 + NO_2$
25	$MeONO_2 + hv \rightarrow HO_2 + HCHO + NO_2$

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

►I

4

>

Back

Close

Full Screen / Esc

Printer-friendly Version

Table 5. Bimolecular reactions in the UKCA standard tropospheric (StdTrop) scheme, where Me = CH₃, Et = C₂H₅, Pr = C₃H₇, PAN = peroxy acetyl nitrate, PPAN = peroxy propionyl nitrate, and MGLY = methylglyoxal. The rate co-efficient of a bimolecular reaction is given by $k = A \left(\frac{T}{300}\right)^{\alpha} \exp\left(\frac{-E_a}{RT}\right)$, where A is the pre-exponential factor, T is the temperature, R is the gas constant, α is the exponent for the $\left(\frac{T}{300}\right)$ temperature dependence, and E_a is the Arrhenius activation energy. References: 1. Atkinson et al. (2000), 2. Atkinson et al. (2003), 3. Atkinson et al. (2004), 4. Atkinson et al. (2005), 5. Jenkin et al. (1997); Saunders et al. (1997), 6. Bloss et al. (2005), 7. Tyndall et al. (2001), and 8. Ravishankara et al. (2002).

Label	l Reaction	Α	α	E _a R	Ref.
1	$HO_2 + NO \rightarrow OH + NO_2$	3.60E-12	0.00	-270.0	2
2	$HO_2 + NO_3 \rightarrow OH + NO_2$	4.00E-12	0.00	0.0	2
3	$HO_2 + O_3 \rightarrow OH + O_2$	2.03E-16	4.57	-693.0	2
4	$HO_2 + HO_2 \rightarrow H_2O_2$	2.20E-13	0.00	-600.0	2
5	$HO_2 + MeOO \rightarrow MeOOH$	3.80E-13	0.00	-780.0	4
6	HO_2 + MeOO \rightarrow HCHO	3.80E-13	0.00	-780.0	4
7	HO_2 + EtOO \rightarrow EtOOH	3.80E-13	0.00	-900.0	1
8	HO_2 + $MeCO_3 \rightarrow MeCO_3H$	2.08E-13	0.00	-980.0	4
9	$HO_2 + MeCO_3 \rightarrow MeCO_2H + O_3$	1.04E-13	0.00	-980.0	4
10	$HO_2 + MeCO_3 \rightarrow OH + MeOO$	2.08E-13	0.00	-980.0	4
11	$HO_2 + n$ -PrOO $\rightarrow n$ -PrOOH	1.51E-13	0.00	-1300.0	5
12	$HO_2 + i$ -PrOO $\rightarrow i$ -PrOOH	1.51E-13	0.00	-1300.0	5
13	$HO_2 + EtCO_3 \rightarrow O_2 + EtCO_3H$	3.05E-13	0.00	-1040.0	5
14	$HO_2 + EtCO_3 \rightarrow O_3 + EtCO_2H$	1.25E-13	0.00	-1040.0	5
15	HO ₂ + MeCOCH2OO → MeCOCH ₂ OOH	1.36E-13	0.00	-1250.0	5
16	$MeOO + NO \rightarrow HO_2 + HCHO + NO_2$	2.95E-12	0.00	-285.0	2
17	$MeOO + NO \rightarrow MeONO_2$	2.95E-15	0.00	-285.0	2
18	$MeOO + NO_3 \rightarrow HO_2 + \overline{HCHO} + NO_2$	1.30E-12	0.00	0.0	2
19	MeOO + MeOO → MeOH + HCHO	1.03E-13	0.00	-365.0	2

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I∢

Back Close

Full Screen / Esc

Printer-friendly Version

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page					
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
I₫	►I				

Full Screen / Esc

Close

Back

Printer-friendly Version

Labe	Reaction	Α	α	$\frac{E_a}{R}$	Ref.
20	MeOO + MeOO → HO ₂ + HO ₂ + HCHO + HCHO	1.03E-13	0.00	-365.0	2
21	$MeOO + MeCO_3 \rightarrow HO_2 + HCHO + MeOO$	1.80E-12	0.00	-500.0	1
22	MeOO + MeCO ₃ → MeCO2H + HCHO	2.00E-13	0.00	-500.0	1
23	EtOO + NO \rightarrow MeCHO + HO ₂ + NO ₂	2.60E-12	0.00	-380.0	2
24	EtOO + $NO_3 \rightarrow MeCHO + HO_2 + NO_2$	2.30E-12	0.00	0.0	1
25	EtOO + $MeCO_3 \rightarrow MeCHO + HO_2 + MeOO$	4.40E-13	0.00	-1070.0	2
26	$MeCO_3 + NO \rightarrow MeOO + CO_2 + NO_2$	7.50E-12	0.00	-290.0	2
27	$MeCO_3 + NO_3 \rightarrow MeOO + CO_2 + NO_2$	4.00E-12	0.00	0.0	5
28	n -PrOO + NO \rightarrow EtCHO + HO ₂ + NO ₂	2.90E-12	0.00	-350.0	2
29	n -PrOO + NO ₃ \rightarrow EtCHO + HO ₂ + NO ₂	2.50E-12	0.00	0.0	5
30	i -PrOO + NO \rightarrow Me ₂ CO + HO ₂ + NO ₂	2.70E-12	0.00	-360.0	2
31	i -PrOO + NO ₃ \rightarrow Me ₂ CO + HO ₂ + NO ₂	2.50E-12	0.00	0.0	5
32	$EtCO_3 + NO \rightarrow EtOO + CO_2 + NO_2$	6.70E-12	0.00	-340.0	2
33	$EtCO_3 + NO_3 \rightarrow EtOO + CO_2 + NO_2$	4.00E-12	0.00	0.0	5
34	$MeCOCH_2OO + NO \rightarrow MeCO_3 + HCHO + NO_2$	2.80E-12	0.00	-300.0	7
35	$MeCOCH_2OO + NO_3 \rightarrow MeCO_3 + HCHO + NO_2$	2.50E-12	0.00	0.0	5
36	$NO + NO_3 \rightarrow NO_2 + NO_2$	1.80E-11	0.00	-110.0	2
37	$NO + O_3 \rightarrow NO_2$	1.40E-12	0.00	1310.0	2
38	$NO_2 + O_3 \rightarrow NO_3$	1.40E-13	0.00	2470.0	1
39	$NO_3 + HCHO \rightarrow HONO_2 + HO_2 + CO$	2.00E-12	0.00	2440.0	2
40	$NO_3 + MeCHO \rightarrow HONO_2 + MeCO_3$	1.40E-12	0.00	1860.0	2
41	$NO_3 + EtCHO \rightarrow HONO_2 + EtCO_3$	3.46E-12	0.00	1862.0	6
42	$NO_3 + Me_2CO \rightarrow HONO_2 + MeCOCH_2OO$	3.00E-17	0.00	0.0	2
43	$N_2O_5 + H_2O \rightarrow HONO_2 + HONO_2$	2.50E-22	0.00	0.0	2
44	$O(3P) + O_3 \rightarrow O_2 + O_2$	8.00E-12	0.00	2060.0	1
45	$O(1D) + CH_4 \rightarrow OH + MeOO$	1.05E-10	0.00	0.0	2
46	$O(1D) + CH_4 \rightarrow HCHO + H_2$	7.50E-12	0.00	0.0	2
47	$O(1D) + CH_4 \rightarrow HCHO + HO_2 + HO_2$	3.45E-11	0.00	0.0	2
48	$O(1D) + H_2O \rightarrow OH + OH$	2.20E-10	0.00	0.0	1

UKCA: The troposphere

F. M. O'Connor et al.

GMDD

6, 1743–1857, 2013

Title Page

Abstract Introduction

References Conclusions

> Tables Figures

I₫ Þ١

Back Close

Full Screen / Esc

Printer-friendly Version

Labe	Label Reaction		α	$\frac{E_a}{R}$	Ref.
49	$O(1D) + N_2 \rightarrow O(3P) + N_2$	2.10E-11	0.00	-115.0	8
50	$O(1D) + O_2 \rightarrow O(3P) + O_2$	3.20E-11	0.00	-67.0	1
51	$OH + CH_4 \rightarrow H_2O + MeOO$	1.85E-12	0.00	1690.0	2
52	$OH + C_2H_6 \rightarrow H_2O + EtOO$	6.90E-12	0.00	1000.0	2
53	$OH + C_3H_8 \rightarrow n-PrOO + H_2O$	7.60E-12	0.00	585.0	2
54	$OH + C_3H_8 \rightarrow i-PrOO + H_2O$	7.60E-12	0.00	585.0	2
55	$OH + CO \rightarrow HO_2$	1.44E-13	0.00	0.0	4
56	OH + EtCHO \rightarrow H ₂ O + EtCO ₃	5.10E-12	0.00	-405.0	2
57	OH + EtOOH \rightarrow H ₂ O + MeCHO + OH	8.01E-12	0.00	0.0	6
58	OH + EtOOH \rightarrow H ₂ O + EtOO	1.90E-12	0.00	-190.0	5
59	$OH + H_2 \rightarrow H_2O + HO_2$	7.70E-12	0.00	2100.0	2
60	$OH + H_2O_2 \rightarrow H_2O + HO_2$	2.90E-12	0.00	160.0	1
61	$OH + HCHO \rightarrow H_2O + HO_2 + CO$	5.40E-12	0.00	-135.0	3
62	$OH + HO_2 \rightarrow H_2O$	4.80E-11	0.00	-250.0	1
63	$OH + HO_2NO_2 \rightarrow H_2O + NO_2$	1.90E-12	0.00	-270.0	2
64	$OH + HONO_2 \rightarrow H_2O + NO_3$	1.50E-13	0.00	0.0	2
65	$OH + HONO \rightarrow H_2O + NO_2$	2.50E-12	0.00	-260.0	2
66	$OH + MeOOH \rightarrow H_2O + HCHO + OH$	1.02E-12	0.00	-190.0	2
67	$OH + MeOOH \rightarrow H_2O + MeOO$	1.89E-12	0.00	-190.0	2
68	$OH + MeONO_2 \rightarrow HCHO + NO_2 + H_2O$	4.00E-13	0.00	845.0	1
69	$OH + Me_2CO \rightarrow H_2O + MeCOCH_2OO$	8.80E-12	0.00	1320.0	2
70	$OH + Me_2CO \rightarrow H_2O + MeCOCH_2OO$	1.70E-14	0.00	-420.0	2
71	$OH + MeCOCH_2OOH \rightarrow H_2O + MeCOCH_2OO$	1.90E-12	0.00	-190.0	6
72	$OH + MeCOCH_2OOH \rightarrow OH + MGLY$	8.39E-12	0.00	0.0	6
73	OH + MeCHO \rightarrow H ₂ O + MeCO ₃	4.40E-12	0.00	-365.0	6
74	$OH + NO_3 \rightarrow HO_2 + NO_2$	2.00E-11	0.00	0.0	1
75	$OH + O_3 \rightarrow HO_2 + O_2$	1.70E-12	0.00	940.0	2
76	$OH + OH \rightarrow H_2O + O(3P)$	6.31E-14	2.60	-945.0	2
77	$OH + PAN \rightarrow HCHO + NO_2 + H_2O$	3.00E-14	0.00	0.0	1

 $\frac{E_a}{R}$

0.0

0.0

0.0

-190.0

-190.0

-188.0

Ref.

5

5

6

5

6

2

Α

1.27E-12

1.90E-12

1.90E-12

1.66E-11

5.50E-12

α

0.00

0.00

0.00

0.00

0.00

0.00

Discussion Paper

UKCA: The troposphere

GMDD

6, 1743-1857, 2013

F. M. O'Connor et al.

Title Page Abstract Introduction Conclusions References

Figures Tables

►I

I₫

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

4	000
- 1	X77

Label Reaction

 $OH + PPAN \rightarrow MeCHO + NO_2 + H_2O$

80 OH + n-PrOOH \rightarrow EtCHO + H_2 O + OH 1.10E-11

79 OH + n-PrOOH $\rightarrow n$ -PrOO + H₂O

82 OH + i-PrOOH \rightarrow Me₂CO + OH

83 $O(3P) + NO_2 \rightarrow NO + O_2$

OH + i-PrOOH $\rightarrow i$ -PrOO + H₂O

Table 6. Un*i*- and termolecular reactions in the UKCA standard tropospheric (StdTrop) scheme, where $Me = CH_3$, $Et = C_2H_5$, PAN = peroxy acetyl nitrate, and PPAN = peroxy propionyl nitrate. Rate co-efficients for termolecular reactions are calculated using a modified Lindemann-

Hinshelwood mechanism i.e. $k = \left(\frac{k_0[M]}{1+\frac{k_0[M]}{k_\infty}}\right) F_c^{1+\log\left[\frac{k_0[M]}{k_\infty}\right]^2}$, where k_0 and k_∞ are the low and high-pressure limits calculated in the same manner as bimolecular rate co-efficients, and [M] is the number density in molecules cm⁻³. References: 1. Atkinson et al. (2000), 2. Atkinson et al. (2003).

Label	Reaction	F_{c}	Low pressure limit, k_{o}			High pressure limit, k_{∞}			Ref.
2000.		• с	Α	α	$\frac{E_a}{R}$	Α	α	$\frac{E_a}{R}$	
1	$HO_2 + HO_2 + M \rightarrow H_2O_2 + O_2 + M$	0.00	1.90E-33	0.00	-980.0	0.00E+00	0.00	0.0	1
2	$HO_2 + NO_2 + M \rightarrow HO_2 NO_2 + M$	0.60	1.80E-31	-3.20	0.0	4.70E-12	0.00	0.0	1
3	$HO_2NO_2 + M \rightarrow HO_2 + NO_2 + M$	0.60	4.10E-05	0.00	10 650.0	4.80E+15	0.00	11 170.0	2
4	$MeCO_3 + NO_2 + M \rightarrow PAN + M$	0.30	2.70E-28	-7.10	0.0	1.20E-11	-0.90	0.0	1
5	$PAN + M \rightarrow MeCO_3 + NO_2 + M$	0.30	4.90E-03	0.00	12 100.0	5.40E+16	0.00	13830.0	1
6	$N_2O_5 + M \rightarrow NO_2 + NO_3 + M$	0.35	1.30E-03	-3.50	11 000.0	9.70E+14	0.10	11 080.0	2
7	$NO_2 + NO_3 + M \rightarrow N_2O_5 + M$	0.35	3.60E-30	-4.10	0.0	1.90E-12	0.20	0.0	2
8	$O(3P) + O_2 + M \rightarrow O_3 + M$	0.00	5.70E-34	-2.60	0.0	0.00E+00	0.00	0.0	2
9	$OH + NO + M \rightarrow HONO + M$	1420.00	7.40E-31	-2.40	0.0	3.30E-11	-0.30	0.0	2
10	$OH + NO_2 + M \rightarrow HONO_2 + M$	0.40	3.30E-30	-3.00	0.0	4.10E-11	0.00	0.0	2
11	$OH + OH + M \rightarrow H_2O_2 + M$	0.50	6.90E-31	-0.80	0.0	2.60E-11	0.00	0.0	1
12	$EtCO_3 + NO_2 + M \rightarrow PPAN + M$	0.30	2.70E-28	-7.10	0.0	1.20E-11	-0.90	0.0	2
13	$PPAN + M \rightarrow EtCO_3 + NO_2 + M$	0.30	1.70E-03	0.00	12 100.0	5.40E+16	0.00	13 830.0	1

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l∢ ⊳l

- ◆

Back Close

Full Screen / Esc

Printer-friendly Version

Table 7. Additional tracers/species associated with the Mainz Isoprene Mechanism in the UKCA TropIsop chemistry scheme, where $Me = CH_3$, $IS = C_5H_7$, ISON = Lumped peroxy alkyl nitrates (from $C_5H_8+NO_3$) and hydroxy alkyl nitrates (from ISO_2+NO), MACR = Lumped species consisting of methacrolein, methyl vinyl ketone and other C_4 carbonyls from isoprene oxidation, MPAN = peroxy methacrylic nitric anhydride (and other higher PANs from isoprene chemistry), HACET = hydroxyacetone and other C_3 ketones, MGLY = methylglyoxal and other C_3 carbonyls, and NALD = nitrooxy acetaldehyde.

Species Name	Treatment
ISO ₂	Steady State
MACRO ₂	Steady State
C ₅ H ₈	Transported Tracer
ISOOH	Transported Tracer
ISON	Transported Tracer
MACR	Transported Tracer
MACROOH	Transported Tracer
MPAN	Transported Tracer
HACET	Transported Tracer
MGLY	Transported Tracer
NALD	Transported Tracer
HCOOH	Transported Tracer
MeCO ₃ H	Transported Tracer
MeCO ₂ H	Transported Tracer
_	

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I⁴

Back Close

Full Screen / Esc

Printer-friendly Version

Back

Table 8. Additional photolytic reactions associated with the Mainz Isoprene Mechanism in the UKCA TropIsop chemistry scheme, where IS = C_5H_7 , ISON = Lumped peroxy alkyl nitrates (from $C_5H_8+NO_3$) and hydroxy alkyl nitrates (from ISO $_2+NO$), MACR = Lumped species consisting of methacrolein, methyl vinyl ketone and other C_4 carbonyls from isoprene chemistry, MPAN = peroxy methacrylic nitric anhydride (and other higher PANs from isoprene chemistry), HACET = hydroxyacetone and other C_3 ketones, MGLY = methylglyoxal nd other C_3 carbonyls, and NALD = nitrooxy acetaldehyde.

Label	Reaction
26	ISOOH + hv → OH + MACR + HCHO + HO ₂
27	ISON + $h\nu \rightarrow NO_2 + MACR + HCHO + HO_2$
28	$MACR + hv \rightarrow MeCO_3 + HCHO + CO + HO_2$
29	$MPAN + hv \rightarrow MACRO_2 + NO_2$
30	MACROOH + $hv \rightarrow OH + OH + HO_2 + HO_2$
31	MACROOH + $hv \rightarrow HACET + CO + \overline{MGLY} + HCHO$
32	$HACET + hv \rightarrow MeCO_3 + HCHO + HO_2$
33	$MGLY + hv \rightarrow MeCO_3 + CO + HO_2$
34	$NALD + hv \rightarrow HCHO + CO + NO_2 + HO_2$
35	$MeCO_3H + hv \rightarrow MeOO + OH$

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

I∢ ≻i

◆ ▶

Full Screen / Esc

Printer-friendly Version

Table 9. Additional bimolecular reactions associated with the Mainz Isoprene Mechanism in the UKCA TropIsop chemistry scheme, where IS = C₅H₇, ISON = Lumped peroxy alkyl nitrates (from C₅H₈+NO₃) and hydroxy alkyl nitrates (from ISO₂ + NO), MACR = Lumped species consisting of methacrolein, methyl vinyl ketone and other C₄ carbonyls from isoprene chemistry, MPAN = peroxy methacrylic nitric anhydride (and other higher PANs from isoprene chemistry), HACET = hydroxyacetone, MGLY = methylglyoxal, and NALD = nitrooxy acetaldehyde. The rate co-efficient of a bimolecular reaction is given by $k = A \left(\frac{T}{300}\right)^{\alpha} \exp\left(\frac{-E_a}{RT}\right)$, where A is the preexponential factor, T is the temperature, R is the gas constant, α is the exponent for the $(\frac{T}{200})$ temperature dependence, and E_a is the Arrhenius activation energy. References: 1. Atkinson et al. (2005), 2. Saunders et al. (2003), 3. Pöschl et al. (2000) and references therein.

Label	Reaction	Α	α	$\frac{E_a}{R}$	Ref
84	$OH + C_5H_8 \rightarrow ISO_2$	2.70E-11	0.00	-390.0	1
85	$O_3 + C_5H_8 \rightarrow 1.95MACR + 1.74HCHO + 0.3MACRO_2 + 0.3MeCO_3$	3.47E-15	0.00	1995.0	1
86	$O_3 + C_5H_8 \rightarrow 0.24MeOO + 0.84HCOOH + 0.42CO + 0.27H_2O_2$	3.47E-15	0.00	1995.0	1
87	$O_3 + C_5 H_8 \rightarrow 0.75 HO_2 + 0.75 OH$	3.47E-15	0.00	1995.0	1
88	$NO_3 + C_5H_8 \rightarrow ISON$	3.15e-12	0.0	450.0	1
89	$NO + ISO_2 \rightarrow NO_2 + MACR + HCHO + HO_2$	2.43E-12	0.00	-360.0	2
90	$NO + ISO_2 \rightarrow ISON$	1.12E-13	0.00	-360.0	3
91	$HO_2 + ISO_2 \rightarrow ISOOH$	2.05E-13	0.00	-1300.0	3
92	$ISO_2 + ISO_2 \rightarrow 2MACR + HCHO + HO_2$	2.00E-12	0.00	0.0	3
93	OH + ISOOH → MACR + OH	1.00E-10	0.00	0.0	3
94	OH + ISON → HACET + NALD	1.30E-11	0.00	0.0	3
95	$OH + MACR \rightarrow MACRO_2$	1.30E-12	0.00	-610.0	1
96	$OH + MACR \rightarrow MACRO_2$	4.00E-12	0.00	-380.0	1
97	$O_3 + MACR \rightarrow 1.80MGLY + 0.90HCOOH + 0.64HO_2 + 0.44CO$	2.13E-16	0.00	1520.0	1
98	$O_3 + MACR \rightarrow 0.38OH + 0.20MeCO_3$	2.13E-16	0.00	1520.0	1
99	$O_3 + MACR \rightarrow 1.80MGLY + 0.90HCOOH + 0.64HO_2 + 0.44CO$	3.50E-16	0.00	2100.0	1
100	$O_3 + MACR \rightarrow 0.38OH + 0.20MeCO_3$	3.50E-16	0.00	2100.0	1
101	$NO + MACRO_2 \rightarrow 2.0NO_2 + 0.5MeCO_3 + 0.5HACET + 0.5CO$	1.27E-12	0.00	-360.0	3
102	$NO + MACRO_2 \rightarrow 1.0MGLY + 1.5HCHO + 1.5HO_2$	1.27E-12	0.00	-360.0	3
103	$HO_2 + MACRO_2 \rightarrow MACROOH$	1.82E-13	0.00	-1300.0	3
104	$MACRO_2 + MACRO_2 \rightarrow 2HACET + 2MGLY + HCHO + CO$	1.00E-12	0.00	0.0	3
105	$MACRO_2 + MACRO_2 \rightarrow HO_2 + HO_2$	1.00E-12	0.00	0.0	3
106	OH + MPAN \rightarrow HACET + NO ₂	2.90E-11	0.00	0.0	1
107	OH + MACROOH \rightarrow MACRO ₂	3.00E-11	0.00	0.0	3
108	OH + HACET \rightarrow MGLY + HO ₂	3.00E-12	0.00	0.0	1
109	$OH + MGLY \rightarrow MeCO_3 + CO$	1.50E-11	0.00	0.0	1
110	$NO_3 + MGLY \rightarrow MeCO_3 + CO + HONO_2$	3.46E-12	0.00	1860.0	2
111	$OH + NALD \rightarrow HCHO + CO + NO_2$	4.40E-12	0.00	-365.0	1
112	$OH + MeCO_3H \rightarrow MeCO_3$	3.70E-12	0.00	0.0	2
113	$OH + MeCO_2H \rightarrow MeOO$	4.00E-13	0.00	-200.0	3
114	OH + HCOOH \rightarrow HO ₂	4.50E-13	0.00	0.0	1

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Introduction **Abstract**

References

Figures

Þ١

Back

Table 10. Additional uni- and termolecular reactions associated with the Mainz Isoprene Mechanism in the UKCA TropIsop chemistry scheme, where MACR = Lumped species consisting of methacrolein, methyl vinyl ketone and other C_{4} carbonyls from isoprene chemistry, and MPAN = peroxy methacrylic nitric anhydride (and other higher PANs from isoprene chemistry). Rate co-efficients for termolecular reactions are calculated using a modified Lindemann-

Hinshelwood mechanism i.e. $k = \left(\frac{k_0[M]}{1 + \frac{k_0[M]}{k_\infty}}\right) F_c^{1 + \log\left[\frac{k_0[M]}{k_\infty}\right]^2}$, where k_0 and k_∞ are the low and high-pressure limits sale. pressure limits calculated in the same manner as bimolecular rate co-efficients, and [M] is the number density in molecules cm⁻³. References: 1. Pöschl et al. (2000) and references therein.

Label	Reaction	$F_{\rm c}$	Low pressure limit, k_o		High pressure limit, k_{∞}			Ref.	
Laber			Α	α	$\frac{E_a}{R}$	Α	α	$\frac{E_a}{R}$	i ici.
14	MACRO ₂ + NO ₂ → MPAN	0.30	2.70E-28	-7.10	0.0	1.20E-11	-0.90	0.0	1
15	$MPAN \rightarrow MACRO_2 + NO_2$	0.30	4.90E-03	0.00	12 100.0	5.40E+16	0.00	13830.0	1

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract

Introduction

Conclusions

References

Figures

Þ١

Full Screen / Esc

Table 11. Summary of the global annual emissions of trace gases used with the two chemistry schemes, StdTrop and Troplsop, in UKCA. * In the case of the StdTrop chemistry scheme, an additional 354 Tg CO yr $^{-1}$ are added as a surrogate for C_5H_8 emissions. When running with the Troplsop chemistry scheme, these additional emissions are neglected but C_5H_8 emissions with a global annual emission total of 506 Tg C yr $^{-1}$ are added instead.

Species	Sector	Emissions
C ₂ H ₆	Anthropogenic (C ₂ H ₆)	3.2 Tg C ₂ H ₆ yr ⁻¹
	Anthropogenic (C ₂ H ₄)	$8.0 \mathrm{Tg} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{yr}^{-1}$
	Anthropogenic (C ₂ H ₂)	$3.8 \mathrm{Tg} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{yr}^{-1}$
	Biomass Burning (C ₂ H ₆)	$3.2 \mathrm{Tg} \mathrm{C}_2 \mathrm{H}_6 \mathrm{yr}^{-1}$
	Biomass Burning (C ₂ H ₄)	$6.8 \mathrm{Tg} \mathrm{C}_2 \mathrm{H}_6 \mathrm{yr}^{-1}$
	Biomass Burning (C ₂ H ₂)	1.7 Tg C ₂ H ₆ yr ⁻¹
	Shipping (C ₂ H ₆)	$0.2 \mathrm{Tg} \mathrm{C}_2 \mathrm{H}_6 \mathrm{yr}^{-1}$
	Shipping (C ₂ H ₄)	$0.2 \mathrm{Tg} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{yr}^{-1}$
	Shipping (C ₂ H ₂)	$0.0 \mathrm{Tg} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{yr}^{-1}$
Total		27.1 Tg C ₂ H ₆ yr ⁻¹
C ₃ H ₈	Anthropogenic (C ₃ H ₈)	3.4 Tg C ₃ H ₈ yr ⁻¹
	Anthropogenic (C ₃ H ₆)	$3.3 \text{Tg C}_3 \text{H}_8 \text{yr}^{-1}$
	Biomass Burning (C ₃ H ₈)	$2.0 \mathrm{Tg} \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{yr}^{-1}$
	Biomass Burning (C ₃ H ₆)	$4.1 \text{Tg C}_3 \text{H}_8 \text{yr}^{-1}$
	Shipping (C ₃ H ₈)	$0.4 \mathrm{Tg} \mathrm{C_3 H_8} \mathrm{yr}^{-1}$
	Shipping (C ₃ H ₆)	$0.3 {\rm Tg} {\rm C_3 H_8} {\rm yr}^{-1}$
Total		13.5 Tg C ₃ H ₈ yr ⁻¹
CH ₄	Anthropogenic	274.1 Tg CH ₄ yr ⁻¹
	Biomass Burning	25.5 Tg CH ₄ yr ⁻¹
	Shipping	0.4 Tg CH ₄ yr ⁻¹

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

l**⊲** ▶l

→

Back Close

Full Screen / Esc

Printer-friendly Version

Species	Sector	Emissions
	Termites	20.0 Tg CH ₄ yr ⁻¹
	Oceans	15.0 Tg CH ₄ yr ⁻¹
	Hydrates	10.0 Tg CH ₄ yr ⁻¹
	Wetlands	108.7 Tg CH ₄ yr ⁻¹
	Bogs	30.0 Tg CH ₄ yr ⁻¹
	Swamps	39.1 Tg CH ₄ yr ⁻¹
	Tundra	$3.2 \mathrm{Tg} \mathrm{CH_4} \mathrm{yr}^{-1}$
Total		526.0 Tg CH ₄ yr ⁻¹
СО	Anthropogenic	607.5 Tg CO yr ⁻¹
	Biomass Burning	459.1 Tg CO yr ⁻¹
	Shipping	1.2 Tg CO yr ⁻¹
	Oceans	45.0 Tg CO yr ⁻¹
	* Vegetation	354.0 Tg CO yr ⁻¹
Total		1466.8 Tg CO yr ⁻¹
НСНО	Anthropogenic	3.2 Tg HCHO yr ⁻¹
	Biomass Burning	5.8 Tg HCHO yr ⁻¹
Total	_	9.0 Tg HCHO yr ⁻¹
NO_x	Anthropogenic	26.5 Tg N yr ⁻¹
^	Biomass Burning	4.5 Tg N yr ⁻¹
	Shipping	5.4 Tg N yr ⁻¹
	Soil	5.6 Tg N yr ⁻¹
	Aircraft	0.8 Tg N yr ⁻¹
	Lightning	5.0 Tg N yr ⁻¹
Total		47.8 Tg N yr ⁻¹
Total		47.8 Tg N yr ⁻

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page Abstract Introduction

References Conclusions

> Tables Figures

I₫ Þ١

Back Close

Printer-friendly Version

Discussion Paper

Interactive Discussion

Species	Sector	Emissions
CH₃CHO Total	Biomass Burning	8.7 Tg MeCHO yr ⁻¹ 8.7 Tg MeCHO yr ⁻¹
CH ₃ COCH ₃	Anthropogenic Biomass Burning Vegetation	$0.7~{\rm TgMe_2COyr^{-1}} \ 5.0~{\rm TgMe_2COyr^{-1}} \ 40.0~{\rm TgMe_2COyr^{-1}}$
Total		45.7 Tg Me ₂ CO yr ⁻¹
* C ₅ H ₈ Total	Vegetation	506.0 Tg C yr ⁻¹ 506.0 Tg C yr ⁻¹

troposphere F. M. O'Connor et al.

GMDD

6, 1743–1857, 2013

UKCA: The

Title Page Abstract

Introduction

Conclusions

References Figures

Þ١

Back

Close

Discussion Paper

Abstract

Conclusions

Tables

I₫

Full Screen / Esc

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Introduction

References

Figures

►I

Close

Printer-friendly Version

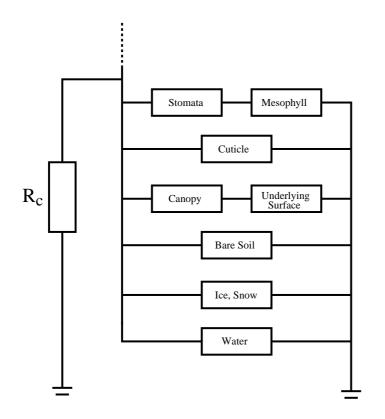
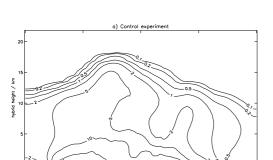
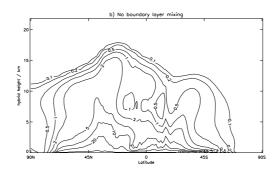




Fig. 1. Schematic of the terms used to calculate the overall surface or canopy resistance term, $r_{\rm c}$, for dry deposition. Adapted from Sanderson et al. (2007).

Fig. 2. Multi-annual zonal mean radon concentrations in units of 10^{-21} mol mol⁻¹ for **(a)** the control experiment and **(b)** an experiment with no boundary layer mixing for the June-July-August (JJA) time period.

GMDD

6, 1743–1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

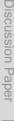
Figures

I∢

►I

•

•


Back

Close

Full Screen / Esc

Printer-friendly Version

Back

Printer-friendly Version

Interactive Discussion

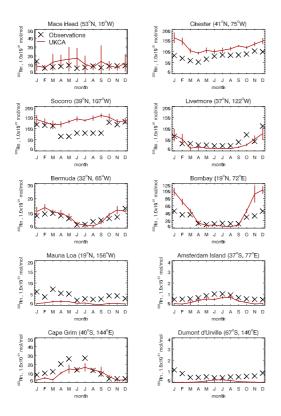


Fig. 3. Comparison of modelled surface radon concentrations in units of 10⁻²¹ mol mol⁻¹ with surface observations for a number of sites spanning the latitude range 53° N-67° S. Observations are shown as black crosses and the UKCA model is shown in red. Measurements are taken from Hauglustaine et al. (2004) and references therein.

6, 1743-1857, 2013

UKCA: The troposphere

GMDD

F. M. O'Connor et al.

Title Page

Abstract


Introduction

References

Figures

Þ١

Full Screen / Esc

UKCA: The troposphere

F. M. O'Connor et al.

GMDD

6, 1743-1857, 2013

Title Page Abstract Introduction References **Tables Figures** Þ١

Full Screen / Esc

Back

Printer-friendly Version

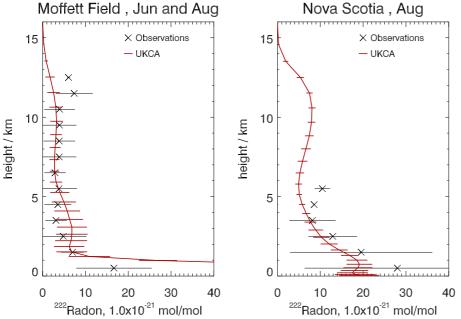


Fig. 4. Comparison of modelled profiles of radon in units of 10⁻²¹ mol mol⁻¹ with observations at two different sites. Observations are shown as black crosses and the UKCA model is shown in red. Measurements from Moffett Field and Nova Scotia are taken from Kritz et al. (1998) and Zaucker et al. (1996), respectively.

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

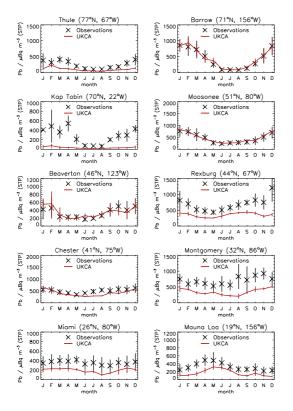


Fig. 5. Comparison of modelled surface lead concentrations in units of μBq m⁻³ (STP) with surface observations for a number of sites in the Northern Hemisphere. Observations are shown as black crosses and the UKCA model is shown in red. Measurements are taken from the Surface Air Sampling Program database of the Environmental Measurements Laboratory (EML) (http://www.nbl.doe.gov/htm/EML_Legacy_Website/databases.htm).

6, 1743-1857, 2013

GMDD

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

References

Figures

Back

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

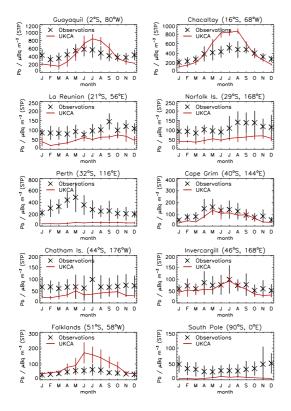


Fig. 6. Comparison of modelled surface lead concentrations in units of μBq m⁻³ (STP) with surface observations for a number of sites in the Southern Hemisphere. Observations are shown as black crosses and the UKCA model is shown in red. Measurements are taken from the Surface Air Sampling Program database of the Environmental Measurements Laboratory (EML) (http://www.nbl.doe.gov/htm/EML_Legacy_Website/databases.htm).

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

References

Figures

References **Figures**

Introduction

GMDD

6, 1743-1857, 2013

UKCA: The

troposphere

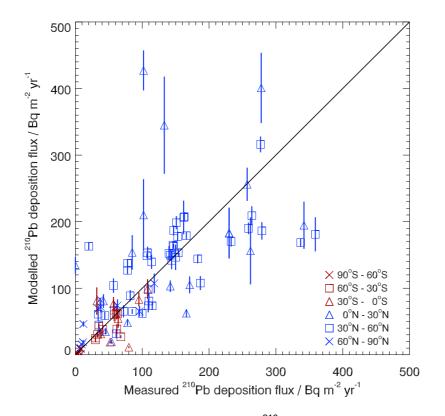
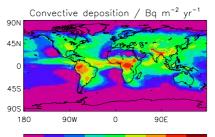
F. M. O'Connor et al.

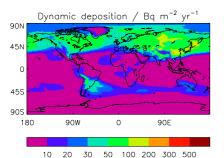
Title Page

Abstract

Full Screen / Esc

Printer-friendly Version


Fig. 7. Scatter plot of the modelled and measured ²¹⁰Pb annual deposition fluxes in units of Bgm⁻²yr⁻¹, where 1.0 Bgm⁻²yr⁻¹ is equivalent to 8.87 × 10²² kgm⁻²yr⁻¹. Northern Hemisphere points are shown in blue and Southern Hemisphere points are shown in red. The vertical whiskers represent ± 1 standard deviation of the modelled annual mean deposition fluxes at each location. Measurements are taken from Preiss and Genthon (1997).

100 200 300 500

20 30 50

Dry deposition / Bq m⁻² yr⁻¹

0

90E

50 100 200 300 500

90N

45N

45S

180

90W

20 30

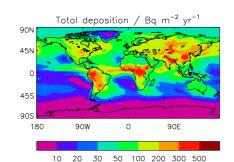


Fig. 8. Global multi-annual mean distribution of ²¹⁰Pb deposition fluxes from UKCA: Dry deposition, convective scavenging, dynamic scavenging, and total deposition flux. Units are in $Bqm^{-2}yr^{-1}$.

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

References Conclusions

Tables Figures

Þ١

Back

Full Screen / Esc

Printer-friendly Version

GMDD

6, 1743-1857, 2013

UKCA: The

troposphere

F. M. O'Connor et al.

Title Page

Introduction

References

Figures

Þ١

Printer-friendly Version

Interactive Discussion

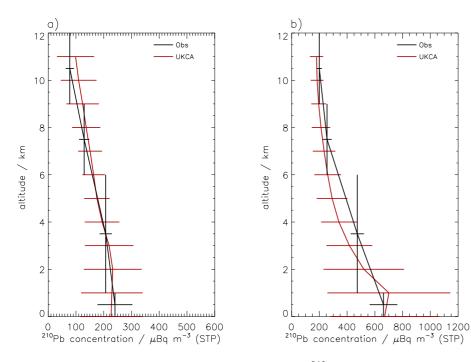
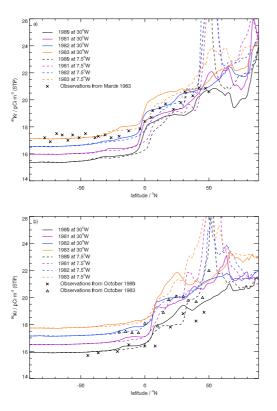


Fig. 9. Comparison between observed vertical profiles of ²¹⁰Pb concentrations and modelled concentrations from UKCA (red) over (a) the remote Pacific and (b) over near Asia. Observations are taken from Dibb et al. (1997).


Abstract

Tables

Fig. 10. Comparison between observed meridional profiles of ⁸⁵Kr concentrations with modelled concentrations from UKCA over the Atlantic ocean **(a)** in March and **(b)** in October. Observations are taken from Weiss et al. (1983) and UKCA was sampled at two longitudes (7.5 and 30° W) to straddle the area sampled by the observations.

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

I∢

►I

■

>

Back

Full Screen / Esc

Printer-friendly Version

d) 2D Offline: zonal mean j(NO2) in July / s1

0.002 e) Fast-J: zonal mean j(NO_o) in July / s

45N

0.005 0.007 0.01

Level

Level

Level

0.012

25 30

0.015

45S

5e-4 0.001

0.001 0.002

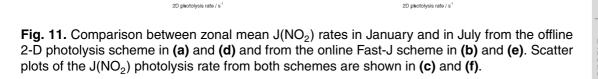
 $r^2 = 0.99$

0.006

0.009

f) j(NO₂) rates in July

0.003


6, 1743-1857, 2013

UKCA: The troposphere

GMDD

F. M. O'Connor et al.

20000

15000

10000 5000

20000

15000

10000 5000

0.015

0.012

0.009

0.006

0.003

0.000

a) 2D Offline: zonal mean j(NO₂) in January / s⁻¹

0.001 0.002

0.001

c) j(NO₂) rates in January

 $r^2 = 0.99$

0.006

0.009

b) Fast-J: zonal mean j(NO_a) in January / s

45N

0.005 0.007

0.002 0.005 0.007

Level Level

Level

0.012

0.015

20000

15000

10000

20000

15000

10000

0.015

0.012

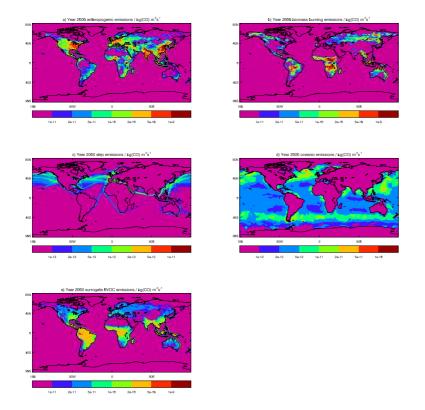
0.009

0.006

0.00

0.000

20-4


0.003

Printer-friendly Version

Printer-friendly Version

Interactive Discussion

Fig. 12. Annual mean surface CO emissions used in the UKCA StdTrop tropospheric chemistry scheme from **(a)** land-based anthropogenic sources, **(b)** biomass burning, **(c)** shipping, **(d)** natural ocean source, and **(e)** surrogate isoprene emissions. Land-based anthropogenic emissions take account of the following sectors: energy production and distribution, industry, land transport, residential and commercial sources, solvent use, agriculture, agricultural waste burning, waste and waste distribution. Note that the scales for **(c)** and **(d)** are two orders and one order of magnitude lower than the others, respectively. Emissions are for the year 2000.

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

nclusions References

Tables Figures

I∢ ▶I

- ◆

Back Close

Back

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

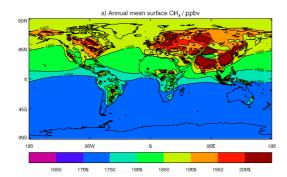
Introduction

References

Figures

Þ١

Abstract


Tables

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

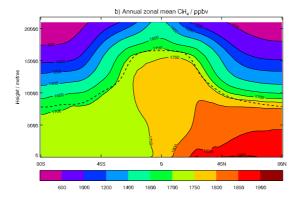


Fig. 13. Multi-annual annual mean (a) surface and (b) zonal mean CH₄ distributions from the StdTrop chemistry scheme in the tropospheric configuration of the UKCA model. The thick dashed line in (b) marks the position of the modelled tropopause (Hoerling et al., 1993).

Discussion Paper

Discussion Paper

Back Full Screen / Esc

Printer-friendly Version

Interactive Discussion

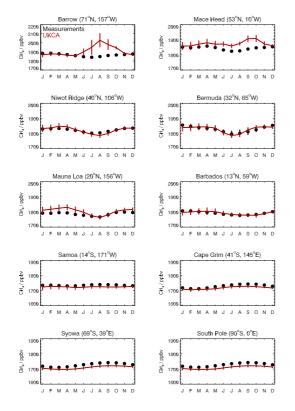


Fig. 14. Comparison between multi-annual seasonal cycles of modelled and observed surface CH₄ concentrations from the 1999–2006 time period. The surface sites include Barrow (71° N, 157° W), Mace Head (53° N, 10° W), Niwot Ridge (40° N, 106° W), Bermuda (32° N, 65° W), Mauna Loa (20° N, 156° W), Barbados (13° N, 59° W), Samoa (14° S, 171° W), Cape Grim (41° S, 145° E), Syowa (69° S, 39° E), and the South Pole (90° S, 0° E).

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page **Abstract** Introduction

References

Figures

Back

Printer-friendly Version

Interactive Discussion

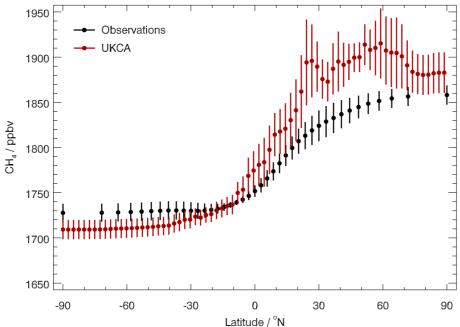


Fig. 15. Comparison between multi-annual latitudinal profiles of observed and modelled surface CH₄ concentrations with surface observations from GLOBALVIEW-CH₄ (2009). Every second model latitude is omitted from the plot for the purpose of clarity.

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page **Abstract** Introduction

References

Tables Figures

Close

▶Ĭ

Full Screen / Esc

Back

Full Screen / Esc

GMDD

6, 1743-1857, 2013

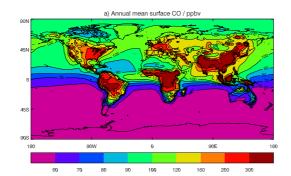
UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Introduction

References


Figures

Þ١

Printer-friendly Version

Interactive Discussion

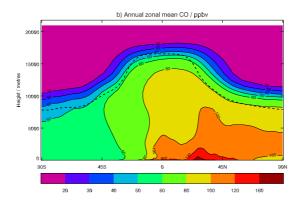
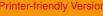
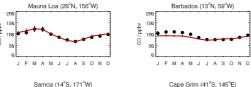


Fig. 16. Multi-annual annual mean (a) surface and (b) zonal mean CO distributions from the StdTrop chemistry scheme in the tropospheric configuration of the UKCA model. The thick dashed line in (b) marks the position of the modelled tropopause (Hoerling et al., 1993).

Tables

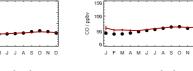

Abstract



Mace Head (53°N, 10°W) AMJJASOND

Bermuda (32°N, 65°W) 200 J F M A M J J A S O N D

Barrow (71°N, 157°W)


J F M A M J J A S O N D

Niwot Ridge (40°N, 106°W)

J F M A M J J A S O N D

300 Mea. 250 UKCA 150 Measurements

200

200

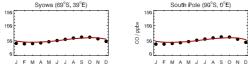


Fig. 17. Comparison between multi-annual monthly mean modelled surface CO concentrations with surface observations from the 1999–2006 time period. The surface sites include Barrow (71° N, 157° W), Mace Head (53° N, 10° W), Niwot Ridge (40° N, 106° W), Bermuda (32° N, 65° W), Mauna Loa (20° N, 156° W), Barbados (13° N, 59° W), Samoa (14° S, 171° W), Cape Grim (41° S, 145° E), Syowa (69° S, 39° E), and the South Pole (90° S, 0° E).

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

References

Figures

Back

Full Screen / Esc

Printer-friendly Version

Back

Interactive Discussion

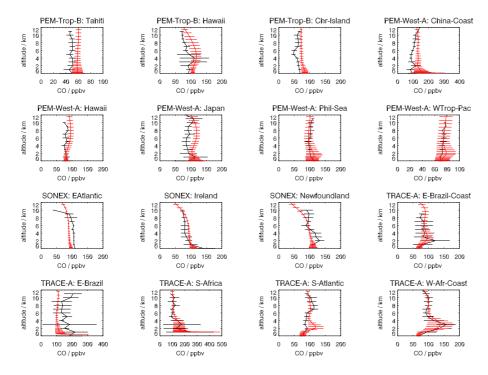


Fig. 18. Comparison between regional vertical profiles of modelled (red) and observed (black) CO from various aircraft campaigns compiled into data composites by Emmons et al. (2000). In each case, the mean concentration in each altitude bin is plotted and the horizontal lines represent the mean ± 1 standard deviation.

GMDD

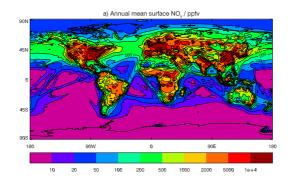
6, 1743-1857, 2013

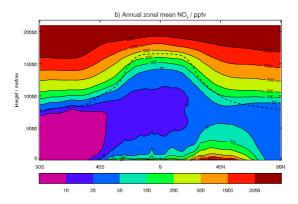
UKCA: The troposphere

F. M. O'Connor et al.

Title Page **Abstract** Introduction

References


Figures


Þ١

Full Screen / Esc

Fig. 19. Multi-annual annual mean **(a)** surface and **(b)** zonal mean NO_x distributions from the StdTrop chemistry scheme in the tropospheric configuration of the UKCA model. The thick dashed line in **(b)** marks the position of the modelled tropopause (Hoerling et al., 1993).

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

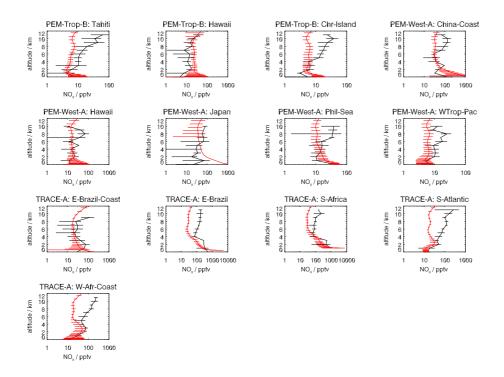
F. M. O'Connor et al.

Title Page

Abstract Introduction

onclusions References

Tables Figures


I₫

Back Close

Full Screen / Esc

Printer-friendly Version

Fig. 20. Comparison between regional vertical profiles of modelled (red) and observed (black) NO_x from various aircraft campaigns compiled into data composites by Emmons et al. (2000). In each case, the mean concentration in each altitude bin is plotted and the horizontal lines represent the mean \pm 1 standard deviation.

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

onclusions References

Tables Figures

→ -

Back Close

Full Screen / Esc

Printer-friendly Version

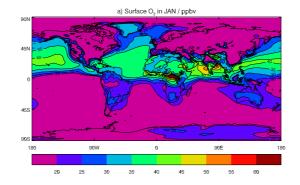
6, 1743-1857, 2013

UKCA: The troposphere

GMDD

F. M. O'Connor et al.

Fig. 21. Multi-annual zonal and diurnal mean OH distributions from the StdTrop chemistry scheme in the tropospheric configuration of the UKCA model in (a) January and (b) July. The thick dashed lines mark the position of the modelled tropopause (Hoerling et al., 1993).


6, 1743-1857, 2013

UKCA: The troposphere

GMDD

F. M. O'Connor et al.

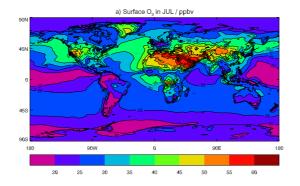


Fig. 22. Multi-annual monthly mean distribution of surface O₃ from the StdTrop chemistry scheme in the tropospheric configuration of the UKCA model in (a) January and (b) July.

6, 1743-1857, 2013

GMDD

UKCA: The troposphere

F. M. O'Connor et al.

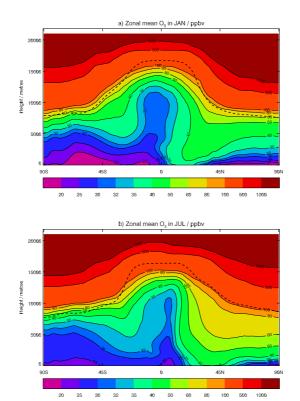
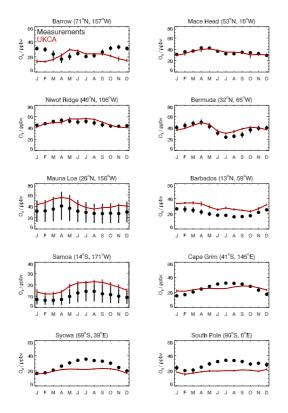



Fig. 23. Multi-annual zonal and diurnal mean O₃ distributions from the StdTrop chemistry scheme in the tropospheric configuration of the UKCA model in (a) January and (b) July. The thick dashed lines mark the position of the modelled tropopause (Hoerling et al., 1993).

Fig. 24. Comparison between multi-annual monthly mean modelled surface O_3 concentrations with surface observations. The surface sites include Barrow (71° N, 157° W), Mace Head (53° N, 10° W), Niwot Ridge (40° N, 106° W), Bermuda (32° N, 65° W), Mauna Loa (20° N, 156° W), Barbados (13° N, 59° W), Samoa (14° S, 171° W), Cape Grim (41° S, 145° E), Syowa (69° S, 39° E), and the South Pole (90° S, 0° E).

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

onclusions References

Tables Figures

Id bl

▶ ...

Back Close
Full Screen / Esc

Printer-friendly Version

6, 1743-1857, 2013

UKCA: The troposphere

GMDD

F. M. O'Connor et al.

Printer-friendly Version

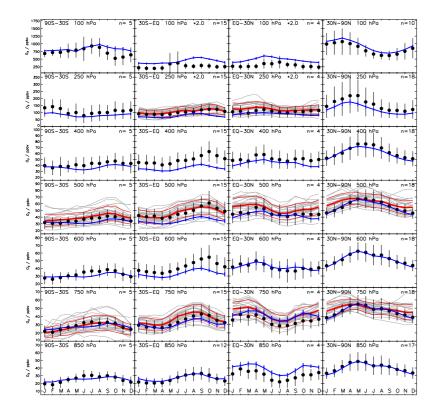
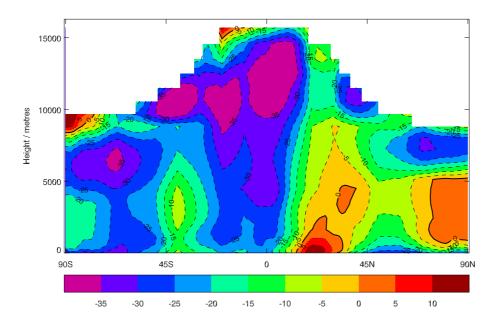



Fig. 25. Comparison of the annual cycle of O₃ observations (black) with UKCA (blue), the ACCENT ensemble of models (grey) and the ACCENT multi-model ensemble mean (red). Observations are taken from Logan et al. (1999), Thompson et al. (2003a) and Thompson et al. (2003b). The modelled and observed O₃ concentrations at 100 and 250 hPa in the latitude bands 30° S-EQ and EQ-30° N have been multiplied by a factor of 2.

Fig. 26. Percentage difference in zonal annual mean O_3 between UKCA and the Fortuin and Kelder (1998) climatology i.e. 100 (model-climatology)/climatology. For the purposes of the comparison, the stratosphere (taken as $O_3 > 150 \, \text{ppbv}$) was masked.

GMDD

6, 1743-1857, 2013

UKCA: The troposphere

F. M. O'Connor et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

Back Close

Full Screen / Esc

Printer-friendly Version

UKCA: The troposphere

F. M. O'Connor et al.

GMDD

6, 1743-1857, 2013

Printer-friendly Version

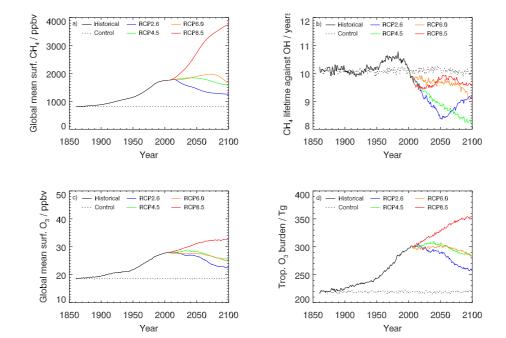


Fig. 27. Timeseries of (a) global mean surface CH₄ concentration (b) CH₄ lifetime against OH, (c) global mean surface O₃ concentration and (d) tropospheric O₃ burden in the HadGEM2-ES simulations carried out for CMIP5. Simulations include a pre-industrial control, an historical simulation, and 4 future simulations using RCP2.6, RCP4.5, RCP6.0, and RCP8.5.